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Abstract 

By using a generalization of the optical tomography technique we describe the dynamics of a quantum system in terms 
of equations for a purely classical probability distribution which contains complete information about the system. 

1. Introduction 

Due to the Heisenberg [ 1 ] and Schrodinger- 
Robertson [ 2,3] uncertainty relations for the position 
and momentum in quantum systems, there does not 
exist a joint distribution function in the phase space. 
Nevertheless, the wish to understand quantum me- 
chanics in terms of classical probabilities has led to the 
introduction of so-called quasi-probability distribu- 
tions, such as the Wigner function [ 41, the Husimi Q- 
function [ 51 and the Glauber-Sudarshan P-function 
[ 6,7]. Later, a set of s-ordered quasi-distributions [ 81 
unified these quasi-probabilities into a one-parameter 
family. Even in the early days of quantum mechanics 
Madelung [9] observed that the modulus and the 
phase of wave functions obey the hydrodynamical 
classical equations, and along this line the stochastic 
quantization scheme has been suggested by Nelson 
[ lo] to link the classical stochastic mechanics for- 
malism with the quantum mechanical basic entities, 
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such as wave function and propagator. In some sense, 
also hidden variables [ 111 were proposed to relate 
the quantum processes to the classical ones. Never- 
theless, up till now there does not exist a formalism 
which consistently connects the “two worlds”. 

The discussed quasi-probabilities clarified the simi- 
larities and the differences between classical and quan- 
tum considerations, and they are widely used as an in- 
strument for calculations in quantum theory [ 12,131. 
However, they cannot play the role of classical distri- 
butions, since, for example, the Wigner function and 
the P-function may have negative values. Although 
the Q-function is always positive and normalized, it 
does not describe measurable distributions of concrete 
physical variables. 

Using the formalism of Ref. [ 81, Vogel and Risken 
[ 141 found an integral relation between the Wigner 
function and the marginal distribution for the measur- 
able homodyne output variable which represents a ro- 
tated quadrature. This result gives the possibility of 
measuring the quantum state, and it is referred to as 
optical homodyne tomography [ 15 1. 

In Ref. [ 161 a symplectic tomography procedure 

0375-9601/96/$12.00 @ 1996 Elsevier Science B.V. All rights reserved 
Ptf SO375-9601(96)00107-7 



2 S. Mancini et al./ Physics Letters A 213 (19%) 1-6 

was suggested to obtain the Wigner function by mea- 
suring the marginal distribution for a shifted and 
squeezed quadrature, which depends on extra pa- 
rameters. In Ref. [ 17 ] the formalism of Ref. [ 141 
was formulated in an invariant form, relating the 
homodyne output distribution directly to the density 
operator. In Ref. [ 181 the symplectic tomography for- 
malism was also formulated in this invariant form and 
it was extended to the multimode case. Thus, due to 
the introduction of a quantum tomography procedure, 
the real positive marginal distribution for measurable 
observables, such as rotated, shifted and squeezed 
quadratures, turned out to determine completely the 
quantum states. 

w(XpL,v,& = .I ,-ik(X-pq-vp-S) 
WC% P) 

The aim of the present work is to formulate the 
standard quantum dynamics in terms of the classical 
marginal distribution of the measurable shifted and 
squeezed quadrature components, used in the sym- 
plectic tomography scheme. Thus we obtain an alter- 
native formulation of the quantum system evolution 
in terms of the evolution of real and positive distri- 
bution functions for measurable physical observables. 
We will show the connection of such a “classical” 
probability evolution with the evolution of the above- 
discussed quasi-probability distributions. 

Examples relative to states of the harmonic oscilla- 
tor and free motion will be considered in the frame of 
the given formulation of quantum mechanics. 

2. Density operator and distribution for shifted 
and squeezed quadrature 

In Ref. [ 161 it was shown that, for the generic linear 
combination of quadratures, which is a measurable 
observable (Fi = 1) 

2=&+vj?+S, (1) 

where 6 and ~9 are the position and momentum respec- 
tively, the marginal distribution w( X, CL, v, S) (nor- 
malized with respect to the X variable), depending 
upon three extra real parameters ,u, v, S, is related to 
the state of the quantum system, expressed in terms of 
its Wigner function W(q,p), as follows: 

x dkdqdp - 

(212)2 . 
(2) 

This formula can be inverted and the Wigner function 
of the state can be expressed in terms of the marginal 
distribution [ 161, 

W(q,p) = (2?r)2s2eisxwF(X,sq,sp,s), (3) 

where wF( X, a, b, s) is the Fourier component of the 
marginal distribution (2) taken with respect to the 
parameters p, v, 6, i.e. 

1 
WF(X,C-&b,s) = - 

(27r)3. _ 
xe -iW+vb+W dp dv da. (4) 

Hence, it was shown that the quantum state can be de- 
scribed by the positive classical marginal distribution 
for the squeezed, rotated and shifted quadrature. In the 
case of only a rotated quadrature, p = cos q5, v = sin q5 
and S = 0, the usual optical tomography formula of 
Ref. [ 141 gives the same possibility through the Radon 
transform instead of the Fourier transform. This ,is, in 
fact, a partial case of the symplectic transformation of 
the quadrature since the rotation group is a subgroup 
of the symplectic group ZSp (2, R) whose parameters 
are used to describe the transformation ( 1). 

In Ref. [ 181 an invariant form directly connecting 
the marginal distribution w( X, p, v, S) and the density 
operator was found: 

-- P- 
J 

dCLdvdsw(X,~,v,S)R,.,s, (5) 

where the kernel operator has the form 

1 kP,y,s = _,2eis(X-S)e-iZpv/2e-isvpe-is&e 

27r 
(6) 

Formulae (3) and (5) of the symplectic tomogra- 
phy show that there exists an invertible map between 
the quantum states described by the set of nonnega- 
tive and normalized Hermitian density operators b and 
the set of positive, normalized marginal distributions 
(the “classical” ones) for the measurable shifted and 
squeezed quadratures. So, the information contained 
in the marginal distribution is the same which is con- 
tained in the density operator; and due to this, one can 
represent the quantum dynamics in terms of the evo- 
lution of the marginal probability. 
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3. Quantum evolution as a classical process 

We now derive the evolution equation for the 
marginal distribution function w using the invariant 
form of the connection between the marginal distri- 
bution and the density operator given by formula (5). 
Then from the equation of motion for the density 
operator 

_- ( 1 a 
p_ -- .lJ a 

a/as av 
+172 , 

1 

( 

i a g= -- .V a 
a/as aP 

+‘Tz , 
> 

&fi= -i[A,@], (7) 

we obtain the evolution equation for the marginal dis- 
tribution in the form 

s 
dp dv da [r+(X, /AL, y, 8,~) &,y,s 

-t w(X,/%Y,O)~j,V,s] = 0, (8) 

in which the known Hamiltonian determines the kernel 
ip,“.r’ through the commutator 

J&,P = i I fit &y,~ 1 . (9) 

The obtained integral-operator equation for simple 
cases can be reduced to the partial differential equa- 
tion. To do this we represent the kernel operator !p,L,y,s 
in a normal order form (i.e. all the momentum opera- 
tors on the left side and the position ones on the right 
side) containing the operator &,,s as follows: 

: fp*.Y,s := R(@) : k&i : P(G), (10) 

where R(g) and P(B) are finite or infinite operator 
polynomials (depending also on the parameters p and 
V) determined by the Hamiltonian. Then, calculating 
the matrix elements of the operator equation (8) be- 
tween the states (PI and 19) and using the complete- 
ness property of the Fourier exponents, we arrive at the 
following partial differential equation for the marginal 
distribution function: 

a,w + n(jj,g)w = 0, (11) 

where the polynomial Z7(a, 4) is the product of the 
polynomials R(p) and P(q) represented in the form 

fl(P, 4) = WP)P(,) = c -p?%,(P, v), 
n m 

(12) 

in which the c-number variables p and q should be 
replaced by the operators 

3 

(13) 

where the derivative in the denominator is understood 
as an integral operator. One should point out that the 
operators p and (? in Eq. ( 11) act on the product of 
coefficients c,,~( ,u, v) and the marginal distribution 
corresponding to the order shown by Eqs. ( 11) and 
( 12). Let us consider the important example of the 
particle motion in a potential with the Hamiltonian 

A = $2 + V(G); (14) 

then the described procedure of calculating the nor- 
mal order kernel ( 10) gives the following form of the 
quantum dynamics in terms of a Fokker-Planck-like 
equation for the marginal distribution: 

a -w-i V i a .V a 
w-Pav [( 

-- 
a/as afl “‘z!G > 

-V 
( 

i a .V a 
---'zas a/as ap )I w = 0, ( 15) 

which in general is an integro-differential equation. 
For the free motion, V = 0, this evolution equation 
becomes the first-order partial differential equation 

3-p-gw=o. 
For the harmonic oscillator V( 6) = Q2/2, the quantum 
dynamic equation has the form 

a a 
ti-pllw+v-w=o. 

ap 
(17) 

Thus given a Hamiltonian of the form ( 14) we can 
study the quantum evolution of the system writing 
down a Fokker-Planck-like equation for the marginal 
distribution. Solving this for a given initial positive and 
normalized marginal distribution, we can obtain the 
quantum density operator j?(t) according to Eq. (5). 
Conceptually it means that we can discuss the system 
quantum evolution considering classical real positive 
and normalized distributions for the measurable vari- 
able X which is a shifted and squeezed quadrature. 
The distribution function which depends on extra pa- 
rameters obeys a classical equation which preserves 
the normalization condition of the distribution. In this 
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sense we always can reduce the quantum behaviour of 
the system to the classical behaviour of the marginal 
distribution of the shifted and squeezed quadrature. 
Of course, this statement respects the uncertainty rela- 
tion, because the measurable marginal distribution is 
the distribution for one observable. That is the essen- 
tial difference (despite some similarity) of the intro- 
duced marginal distribution from the discussed quasi- 
distributions, including the real positive Q-function, 
which depend on the two variables of the phase space 
and are normalized with respect to these variables. We 
would point out that we do not derive quantum me- 
chanics from classical stochastic mechanics, i.e. we 
do not quantize any classical stochastic process, our 
result is to present the quantum dynamics equations 
as classical ones, and in doing this we need not only 
a classical Hamiltonian but also its quantum counter- 
part. 

4. Examples 

Below we consider simple examples of the marginal 
distribution evolution for states of free motion and the 
harmonic oscillator. First of all we take into account 
the free motion for which Eq. (16) has a Gaussian 
solution of the form 

where the dispersion of the observable X depends on 
time and parameters as follows: 

ax(t) = ; [/L2 (1 + t2) + Y2 + 2/T.&] . (19) 

The initial condition corresponds to the marginal dis- 
tribution of the ground state of an artificial harmonic 
oscillator calculated from the respective Wigner func- 
tion [ 161. 

If we consider the first excited state of the harmonic 
oscillator, we know the Wigner function [ 191 

WI (q, p) = -2 (1 - 2q2 - 2p2) exp (-4’ - p2) . 

(20) 

This result is time independent due to the stationarity 
of the state, but for small q and p it becomes negative, 
while the solution of Eq. ( 17)) 

(21) 

is itself time independent, but everywhere positive. 
Indeed, a time evolution is present explicitly in the 

coherent state, whose Wigner function is given by 

W,(q,p) =2exp[-q2-qzO-p2-ppo2 

+Zwo+wO)cost- (pq0-qm)sint] v 

(22) 

where qo and pc are the initial values of position and 
momentum. For the same state, the marginal distribu- 
tion shows a more complicated evolution, 

wC(X,&&&r) = +/12+y2)-r/2 

x exp 
( 

-q; _ PO2 - (X;Z@2 

+2 $%O cos f - q0 sin t) 
> 

1 
xexp - 

1 ( #u2 + ZJ 
k(X-8) 
Y 

+fi(usinf-pcost))2]. (23) 

It is also interesting to consider the comparison be- 
tween Wigner function and marginal probability for 
non-classical states of the harmonic oscillator, such as 
the female cat state defined as [ 201 

lo-) = N-(/o) - I-a)), 
a=2-“2(qa+im), 

with 

(24) 

N_ 
exp[(& +Po2)/21 

> 

“2 
4sinh[($+pi)/21 ’ 

(25) 

and for which the Wigner function assumes the fol- 
lowing form: 
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W_ (q, p) = 2N<e-9z-pz system) which is contained in any quasi-distribution 

x e-Y~-P~cosh[2(qqo+ppo)cost 
( 

function. But the probability density has the advantage 
of behaving completely as the usual classical one. The 

+2(wo-p90)sintl -cos[2(qpo-p90)cost physical meaning of the “classical” random variable X 
is transparent, it is considered as the position in an en- 

- Vw0 +ppo) sinrl . > 

The corresponding marginal distribution is 

w- (X, /A v, 6, t) = NT [WAX, ,uU, v, 4 t) 

-WB(X./&zJ,S,t) - w;(X,&v,&r) 

+ WAC-x&h-&r)] , 

with 

(26) 

(27) 

semble of shifted, rotated and scaled rest frames in the 
classical phase space of the system under study. We 
remark that for non-normalized quantum states, like 
the states with fixed momentum (De Broglie wave) 
or with fixed position, the introduced map in Fq. (5) 
may be preserved. In this context the plane wave states 
of free motion have the marginal distribution corre- 
sponding to classical white noise. 

wA(X,/%v,&t) = S(p2 + y2)-‘12 

x exp 
( 

-9CPo2 - 
(X - S)2 

V* 

5. Conclusions 

+2 v(pocost--qasint) 
> 

1 
xexp ____ 

[ ( J.3 + v2 
k(X-8) 
v 

+qo( j.4 sin t + v cos r) 
2 

+ pa(vsint- pcost) 
)I 

, 

and 

WB(X,,%v,&t) = +p2 + v2)-1/2 

x exp 
( 

(X-S)2 
- 

V2 

_ 2ixes y(qncos1+pasint) 
> 

xexp [--A (-if(X-S), 

+qo( p cos f - v sin t) 
2 

+ pa(j_4sint + vcost) 
)I 

. 

(28) 

(29) 

We have shown that it is possible to bring the 
quantum dynamics back to a classical description 
in terms of a probability distribution containing 
(over) complete information. The time evolution of a 
measurable probability for the discussed observables 
can be useful both for the prediction of the experi- 
mental outcomes at a given time and, as mentioned 
above, to achieve the quantum state of the system at 
any time. Furthermore the symplectic transformation 
of Eq. ( 1) can be represented as a composition of 
shift, rotation and squeezing. So, the measurement of 
a shifted variable means the measure of the coordinate 
in a frame in which the zero is shifted. This could be 
implemented for example by measuring the oscillator 
coordinate using an infinite ensemble of frames which 
are shifted with respect to the initial one (a related 
method was discussed also in Ref. [ 2 11) . Further- 
more if one considers the variable 4 as the photon 
quadrature, which corresponds to the amplitude of 
the electric vector vibrations, a rotation means a ho- 
modyne measurement, while the squeezing means 
measurement after amplification or attenuation. So, 
we want to emphasize that our procedure allows us 
to transform the problem of quantum measurements 
(at least for some observables) into the problem of 
classical measurements with an ensemble of shifted, 
rotated and scaled reference frames in the (classical) 
phase space. 

We also want to remark that in some situations the 
measurements of instantaneous values of the marginal 
distribution for different values of the parameters is re- 

The presented examples show that with the evolution 
of the state of a quantum system, one can always as- 
sociate the evolution of the probability density for the 
random classical variable X which obeys a “classical” 
Fokker-Planck-like equation, and this probability den- 
sity contains the same information (about the quantum 
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placed by measuring the distribution for these param- 
eters which evolve in time. Such measurements may 
be consistent with the system evolution if the parame- 
ter’s time variation is much faster than the natural evo- 
lution of the system itself. In this case the state of the 
system does not change during the measurement pro- 
cess and one obtains the instant value of the marginal 
distribution and of the Wigner function. 

Finally we believe that our “classical” approach 
could be a powerful tool to investigate complex quan- 
tum system as for example chaotic systems in which 
the quantum chaos could be considered in a frame of 
equations for a real and positive distribution function. 
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