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Symplectic tomography as classical approach
to quantum systems
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Abstract

By using a generalization of the optical tomography technique we describe the dynamics of a quantum system in terms
of equations for a purely classical probability distribution which contains complete information about the system.

1. Introduction

Due to the Heisenberg [1] and Schrodinger-
Robertson [2,3] uncertainty relations for the position
and momentum in quantum systems, there does not
exist a joint distribution function in the phase space.
Nevertheless, the wish to understand quantum me-
chanics in terms of classical probabilities has led to the
introduction of so-calied quasi-probability distribu-
tions, such as the Wigner function [4], the Husimi Q-
function (5] and the Glauber-Sudarshan P-function
[6,7]. Later, a set of s-ordered quasi-distributions [ 8]
unified these quasi-probabilities into a one-parameter
family. Even in the early days of quantum mechanics
Madelung [9] observed that the modulus and the
phase of wave functions obey the hydrodynamicai
classical equations, and along this line the stochastic
quantization scheme has been suggested by Nelson
[10] to link the classical stochastic mechanics for-
malism with the quantum mechanical basic entities,
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such as wave function and propagator. In some sense,
aiso hidden variables {11] were proposed to relaie
the quantum processes to the classical ones. Never-
theless, up till now there does not exist a formalism
which consistently connects the “two worlds”.

The discussed quasi-probabilities clarified the simi-
larities and the differences between classical and quan-
tum considerations, and they are widely used as an in-
strument for caicuiations in quantum theory { 12,13].
However, they cannot play the role of classical distri-
butions, since, for example, the Wigner function and
the P-function may have negative values. Although
the Q-function is always positive and normalized, it
does not describe measurable distributions of concrete
physical variables.

Using the formalism of Ref. {8], Vogel and Risken
[14] found an integral relation between the Wigner
function and the marginal distribution for the measur-
able homodyne output variable which represents a ro-
tated quadrature. This result gives the possibility of
measuring the quantum state, and it is referred to as
optical homodyne tomography [15].
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was suggested to obtain the Wigner function by mea-
suring the marginal distribution for a shifted and
squeezed quadrature, which depends on extra pa-
rameters. In Ref. [17] the formalism of Ref. [14]
was formulated in an invariant form, relating the
homodyne output distribution directly to the density
operator. In Ref. [ 18] the symplectic tomography for-
malism was also formulated in this invariant form and
it was extended to the multimode case. Thus, due to
the introduction of a quantum tomography procedure,
the real positive marginal distribution for measurable
observables, such as rotated, shifted and squeezed

drat turnad i
quadratures, turned out to determine completely the

quantum states.

The aim of the present work is to formulate the
standard quantum dynamics in terms of the classical
marginal distribution of the measurable shifted and
squeezed quadrature components, used in the sym-
plectic tomography scheme. Thus we obtain an alter-
native formuiaiion of ihe quanium sysiem evoluiion
in terms of the evolution of real and positive distri-
bution functions for measurable physical observables.
We will show the connection of such a “classical”
probability evolution with the evolution of the above-
discussed quasi-probability distributions.

Examples relative to states of the harmonic oscilla-
tor and free motion will be considered in the frame of
the given formulation of quantum mechanics.

In Ref. [ 16] it was shown that, for the generic linear

combmatluu—uf quadratures, which is a measurable
observable (A= 1)
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where § and p are the position and momentum respec-
tively, the marginal distribution w(X, u,»,6) (nor-

malized with respect to the X variable), depending
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upon three extra real parameters w, v, d, is related to
the state of the quantum system, expressed in terms of
its Wigner function W(g, p), as follows:
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This formula can be inverted and the Wigner function
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distribution [16],
W(q,p)
where wg(X, a, b, s) is the Fourier component of the

marginal distribution (2) taken with respect to the
parameters u, v, d, i.e.

= (2m) s’ F wg(X, 59, 5p, ), (3)

wF(X,u,b,s) = (T:;)—?;/W(X,/L,V,ﬁ)
xe i patbtos) 4 dy d6. (4)

Hence, it was shown that the quantum state can be de-
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scribed by the positive classical marginal distribution
for the squeezed, rotated and shifted quadrature. In the
case of only a rotated quadrature, u = cos ¢, v = sin¢
and § = 0, the usual optical tomography formula of
Ref. [ 14] gives the same possibility throughthe Radon
transform instead of the Fourier transform. This is, in
fact, a partial case of the symplectic transformation of
the quadrature since the rotation group is a subgroup
of the symplectic group ISp(2, R) whose parameters
are used to describe the transformation (1).

In Ref. [18] an invariant form directly connecting
the marginal distribution w(X, i, v, §) and the density
operator was found:

=/d,u,dvd8w(X,p,,u,6)K .5 (5
where the kernel operator has the form
KA' e = Ls2exs(X—&)e—iszp;pﬂe—ruﬁe—.';ui (6)
WBE " ar
Formulae (3) and (5) of the symplectic tomogra-

mple
phy show that there exists an invertible map between
the quantum states described by the set of nonnega-
tive and normalized Hermitian density cperators g and
the set of positive, normalized marginal distributions
(the “classical” ones) for the measurabie shifted and
squeezed quadratures. So, the information contained
in the marginal distribution is the same which is con-

tained in the density operator; and due to this, one can
represent the quantum dynamics in terms of the evo-

lution of the marginal probability.
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3. Quantum evolution as a classical process

We now derive the evolution equation for the
marginal distribution function w using the invariant
form of the connection between the marginal distri-
bution and the density operator given by formula (5).
Then from the equation of motion for the density
operator

/ dudrvdé [W(X,/.L,V,S,t)k,,,_,,,(s
+ w(X,m,v,8,0)1,,5] =0, (8)

in which the known Hamiltonian determines the kernel
I, through the commutator

3 70Y
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The obtained integral-operator equation for simple
cases can be reduced to the partial differential equa-
tion. To do this we represent the kernel operator /, Y
in a normal order form (i.e. all the momentum opera-
tors on the left side and the position ones on the right
side) containing the operator K'#,,,,g as follows:

fuws =R(P) : Kuws : P(D), (10)

where R(p) and P(4§) are finite or infinite operator
polynomials (depending also on the parameters u and
v) determined by the Hamiltonian. Then, calculating
the matrix elements of the operator equation (8) be-
tween the states \y| and |q/ and ‘tiSii‘lg the \.umpu:tc-
ness property of the Fourier exponents, we arrive at the
following partial differential equation for the marginal

distribution function:

3w + (P, Hyw = 11y
oW T LI\P,G)W =Y, (i)

where the polynomial II(p,§) is the product of the
polynomials R(p) and P(q) represented in the form

(12)

in which the c-number variables p and g should be
replaced by the operators

. 1 4 .ud
p= q/ne_a.—+17\-—-; 4
\U/UUUV LUU/
1 4 va
q=(nlqon—-+i::\i (13)
\3/d6du 235/

where the derivative in the denominator is understood
as an integral operator. One should point out that the
operators p and g in Eq. (11) act on the product of
rnaffriante ~ {12 1) and tha marginal Aigteihiition
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corresponding to the order shown by Eqgs. (11) and
(12). Let us consider the important example of the
particle motion in a potential with the Hamiltonian

—1a {5\ F1AN
=3P TVig), Li5)
then the described procedure of calculating the nor-
mal order kernel (10) gives the following form of the
quantum dynamics in terms of a Fokker-Planck-like

far tha marsinal Aigtnilag
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For the free motlon, = 0, thls evolutlon equatlon
becomes the first-order partial differential equation

7}
W—u—w=0. (16)
av
For the harmomc oscillator V(§) = 4*/2, the quantum
dynamic equation has the form
a
W—,u—?—w-l—v;—-w:O. (17)
ov ou

Thus given a Hamiltonian of the form (14) we can
study the quantum evolution of the system writing
down a Fokker-Planck-like equation for the marginal
distribution. Solving this for a given initial positive and
normalized marginal distribution, we can obtain the
quantum density operator 5(t) according to Eq. (5).
Conceptually it means that we can discuss the system
quantum evolution considering classical real positive
and normalized distributions for the measurabie vari-
able X which is a shifted and squeezed quadrature.
The distribution function which depends on extra pa-
rameters obeys a classical equation which preserves
the normalization condition of the distribution. In this
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sense we always can reduce the quantum behaviour of
the system to the classical behaviour of the marginal
distribution of the shifted and squeezed quadrature.
Of course, this statement respects the uncertainty rela-
tion, because the measurable marginal distribution is
the distribution for one observable. That is the essen-
tial difference (despite some similarity) of the intro-
duced marginal distribution from the discussed quasi-
disiributions, inciuding the real posiiive O-function,
which depend on the two variables of the phase space
and are normalized with respect to these variables. We
would point out that we do not derive quantum me-
chanics from classical stochastic mechanics, i.e. we
do not quantize any classical stochastic process, our
result is to present the quantum dynamics equations
as classical ones, and in doing this we need not only
a classical Hamiltonian but also its quantum counter-
part,

4, Examples

distribution evolution for states of free motion and the
harmonic oscillator. First of all we take into account
the free motion for which Eq. (16) has a Gaussian
solution of the form

PR P TR ROpIIR 1§ R 7 QK | b PR
1 01 UIC O0xCIVavic A ucpenuas on
as

- n
time and parameters as follows:

ox(t) =1 [ (1+ ) +v? +2uv1]. (19)

The initial condition corresponds to the marginal dis-
tribution of the ground state of an artificial harmonic
oscillator calculated from the respective Wigner func-
tion [16].

If we consider the first excited state of the harmonic
voner function 101

illator, we Lnow tha Wi
KIOW UIC WIgHoer :uncuon |17

ner
O8CLL1 0T,

Wi(q,p) = -2 (1 —24* — 2p*) exp (—¢* - p?).
(20)

This result is time independent due to the stationarity

of the state, but for small g and p it becomes negative,
while the solution of Eq. (17),

2
wi (X, u, v, 8, t)_-_/—;(,u +v ) 3/2(X—5)2
X 52
X exp ———u2+y)2), (21)

is itself time independent, but everywhere positive.
Indeed, a time evolution is present explicitly in the
coherent state, whose Wigner function is given by

We(q.p) =2exp [-¢" — g5~ p* — p}
+2(gqo + ppo) cost — (pgo — qpo) sin1] ,
(22)

where go and pyg are the initial values of position and
momentum. For the same state, the marginal distribu-
tion shows a more complicated evolution,

i
we(X, u,v,0,1) = _\/_7__7.(”2_*_ Vz)_l/z

, (X—98)?

X exp (—43 —P— 03

+ 2X—;—8(pocost— qosint))

xexp[ - (Bx -5
" \V
+ go(pusint + vcost)
2
+ po(vsint — ucost) ) ] . (23)

It is also interesting to consider the comparison be-
iween Wigner funciion and marginal probability for
non-classical states of the harmonic oscillator, such as
the female cat state defined as [20]

la-) = N_(|a) — |-a)),
a=2""2(gy +ipy), (24)
with

/o2 0 2\ Im1 O\ |/2
N_ = CXPIL\Yy T+ P/ «1]
4sinh[ (g3 + p3) /2] ’

(25)

and for which the Wigner function assumes the fol-
lowing form:
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W_(q,p) =2N%e™9~

- 2(qqo + ppo) sint} ). (26)
The corresponding marginal distribution is
w_ (X, u,v,6,t) = N2 [WA(X, H, v, 0,1)

—wg (X, u,v,8,t) — wg(X, u,v,6,1)

+ wa(—=X, u, v, —6,t)] , 27)

writh
Wil

1 _
wa(X, p,v,8,1) = —=(u? + )71/
V’IT

, (X-8)?
- — 77—

<exp ( b - :
\ 14

(pocost — gosin t)\

,,,,,

+qgo(psint + vcost)
2
+ polwsint - peost) ) ] , (28)
and

1 ~ - 118
we(X, u,v,8,t) = 7—;(#‘ +ve)7e

8§)?
X exp &——————

X8 3
—2i ” (qocost+posint))
r 1 /‘"

- —i= é
xexpl #2+V2( 1V(X )

2
+ po(usint 4+ vcost) ) ] . (29)

The presented examples show that with the evolution
of the state of a quantum system, one can aiways as-
sociate the evolution of the probability density for the
random classical variable X which obeys a “classical”

Fokker~Planck-like equation, and this probability den-
sity contains the same information (about the quantum

system) which is contained in any quasi -distribution
function. But the pluuauuuy ucubuy has the auvamagc
of behaving completely as the usual classical one. The
physical meaning of the “classical” random variable X
is transparent, it is considered as the position in an en-
semble of shifted, rotated and scaled rest frames in the
classical phase space of the system under study. We
remark that for non-normalized quantum states, like
the states with fixed momentumn {De Broglie wave)
or with fixed position, the introduced map in Eq. (5)
may be preserved. In this context the plane wave states
of free motion have the marginal distribution corre-
sponding to classical white noise.

=
O \,uuuumuna

We have shown that it is possible to bring the
quantum dynamics back to a classical description
in terms of a probability distribution containing
(over)complete information. The time evolution of a
measurable probability for the discussed observables
can be useful both for the prediciion of the experi-
mental outcomes at a given time and, as mentioned
above, to achieve the quantum state of the system at
any time. Furthermore the symplectic transformation
of Eq. (1) can be represented as a composition of
shift, rotation and squeezing. So, the measurement of
a shifted variable means the measure of the coordinate
in a frame in which the zero is shifted. This could be
implemented for example by measuring the oscillator
coordinate nmng an infinite ensemble of frames which

are shifted with respect to the initial one (a related
method was discussed also in Ref. [211). Further-
more if one considers the variable § as the photon
quadrature, which corresponds to the amplitude of
the electric vector vibrations, a rotation means a ho-
modyne measurement, while the squeezing means
measurement after amn]:ﬁ(‘ahnn or attenuation, So,

we want to emphasue that our procedure allows us
to transform the problem of quantum measurements
(at least for some observables) into the problem of
classical measurements with an ensemble of shifted,
rotated and scaled reference frames in the (ciassicai)
phase space.

We also want to remark that in some situations the
measurements of instantaneous values of the marginal
distribution for different values of the parameters is re-
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placed by measuring the distribution for these param-
eters which evolve in time. Such measurements may
be consistent with the system evolution if the parame-
ter’s time variation is much faster than the natural evo-
lution of the system itself. In this case the state of the
system does not change during the measurement pro-
cess and one obtains the instant value of the marginal
distribution and of the Wigner function.

Finally we believe that our “classical” approach
could be a powerful tool to investigate complex quan-
tum system as for example chaotic systems in which
the quantum chaos could be considered in a frame of
equations for a real and positive distribution function.
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