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Abstract
In this study, we provide a way to describe the dynamics of quantum tomography in an open
system with a generalized master equation, considering a case where the relevant system under
tomographic measurement is influenced by the environment. We apply this to spin tomography
because such situations typically occur in μSR (muon spin rotation/relaxation/resonance)
experiments where microscopic features of the material are investigated by injecting muons as
probes. As a typical example to describe the interaction between muons and a sample material,
we use a spin-boson model where the relevant spin interacts with a bosonic environment. We
describe the dynamics of a spin tomogram using a time-convolutionless type of generalized
master equation that enables us to describe short time scales and/or low-temperature regions.
Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff,
a clear interdependency is found between the time evolution of elements of the density operator
and a spin tomogram. The formulation in this paper may provide important fundamental
information for the analysis of results from, for example, μSR experiments on short time scales
and/or in low-temperature regions using spin tomography.

Keywords: tomography, muons, quantum dissipative systems

1. Introduction

The relationship between quantum states and classical prob-
ability functions has been intensively studied since the 1930s.
Two important early approaches were those of Pauli [1] and
Wigner [2]. Pauli discussed the possibility of determining a
wave function for a quantum particle using probability
functions of position W x( )⃗ and momentum W p( )⃗ [1].
Because these functions do not describe the uncertainty
principle between the position and momentum, Pauli’s
approach had limited success. Wigner attempted to identify a
probability function with a generating function for a spatial
correlation function. However, because this function can take
negative values, it is categorized as a quasi-probability
function. On the basis of these early approaches, there have
subsequently been numerous quasi-probability functions
proposed, such as the Hushimi Q-function [3] and the
Sudarshan–Glauber P-function [4, 5].

The problem of the Wigner function being able to take
negative values was solved using a Radon transform, which

enables a positive probability function to be obtained by
integrating along straight lines in phase space and recon-
structing the Wigner function with the slices [6]. Such a
tomographic concept was also proposed to reconstruct a
Wigner function, Hushimi Q-function and Sudarshan–Glau-
ber P-function using a probability distribution for a rotated
quadrature phase [7], which has been demonstrated to
reconstruct a vacuum and/or squeezed light state with
Homodyne detection [8, 9].

Although it has been demonstrated that a quantum state
can be reconstructed with a measurable probability distribu-
tion (called a tomogram), the subject system was limited to a
light field. Such a limitation can be removed by the gen-
eralization of the rotation of quadratures to a symplectic
transform to include shift and squeezing [10]. This general-
ization led to various developments such as the dynamics of
tomography [11, 12], spin systems [13–17] as well as tomo-
graphy on curved surfaces [18, 19]. The association between
the density operator and the spin tomogram can be considered
as a special case of mapping from Hilbert space operators
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onto a space of ordinary functions equipped with a star pro-
duct, which provides us with a way to map the time evolution
of density operators with an ordinary function [20–22]. The
spin tomogram is directly related to measurements of the μSR
(muon spin rotation/relaxation/resonance) method [23].
Tomography has been extended to incorporate reduced
dynamics under environmental influences with dynamical
maps [22, 24] and a relaxation process using a Markovian
approximation [25, 26].

With the development of experimental techniques, the
observable times and temperatures have become shorter and
lower, respectively. For example, the muon spin relaxation for
a spin 1

2
Kagome ́ lattice has been experimentally studied at

low temperatures from T 50 mK∼ to a few K to describe the
non-Markovian time evolution, which cannot be described by
exponential decay [27]. To describe such a relaxation process,
it is necessary to extend the tomographic representation
beyond the Markovian approximation.

In this work, we provide an approach to extend the
tomographic representation to an open system to treat the
non-Markovian relaxation process using a generalized master
equation. We apply the obtained formalism to a spin-boson
model [28, 29], which has been extensively used in con-
densed matter physics. We describe the dynamics of spin
tomograms to explain the graphical representation of the
probability function for a spin system, which can provide
valuable fundamental information for muon relaxation
experiments.

This paper is organized as follows: in section 2, we
provide an approach to quantum tomography for an open
quantum system. We apply this to a spin tomogram in
section 3. In section 4, we present a description of the time
evolution of the spin tomogram for a spin-boson system. This
is followed by a numerical evaluation in section 5. Con-
cluding remarks are presented in section 6.

2. An approach to quantum tomography for open
quantum system

In this section, we introduce an extension of quantum
tomography to an open quantum system after reviewing the
general approach to a tomographic system [30, 31, 33].

Let us consider a quantum system that consists of N
degrees of freedom described with commuting Hermitian
operators A A Aˆ , ˆ ,... ˆ

N1 2 . We describe a quantum state of the
system with a density operator ρ that is a trace class and
Hermitian operator, such as

Tr 1, ,†ρ ρ ρ= =

and satisfies positivity which means the eigenvalues of ρ are
non-negative [34]. This enables us to interpret the diagonal
elements of ρ as a probability, expressed as

a a 0,ρ ⩾

where a∣ 〉 is a set of vector basis which consists of the
eigenstates of the operators, Âk, with k N1 ⩽ ⩽ [31].

Using a Hermitian projection operator

a aˆ , (1)aΠ =

we extract a state a∣ 〉 and describe the probability of finding
the system in that state as

Tr ˆ . (2)a a a,
⎡⎣ ⎤⎦ρ Π ρ=

The transformation of the projection operator with a unitary
operator U ( )ξ

U a a Uˆ ( ) ( ) ( ), (3)a
†Π ξ ξ ξ=

where ξ is a set of parameters to describe the unitary
operation, gives the probability in the form

a U U a

w a

( ) Tr ˆ ( ) ( ) ( )

( , ), (4)
a a a,

†⎡⎣ ⎤⎦ρ ξ Π ξ ρ ξ ρ ξ

ξ

= =
≡

which is called a tomogram. The tomogram enables us to
describe a quantum state while preserving the quantum
property. When treating a spin system, U ( )ξ corresponds to
the rotation operators expressed using Euler angles
(equation (8)), and hence the spin tomogram describes the
probability in a rotated axis.

With the inversion of equation (4) such as

a w a K ad d ( , ) ( , ), (5)∫ ∫ρ ξ ξ ξ=

we can reconstruct the original quantum state with the
tomogram. For this purpose, we need to obtain a family of
operators K a( , )ξ that enable an unknown quantum state to
be determined from the tomogram.

Next, let us consider the description of an open quantum
dynamics system for a tomographic image. For this purpose,
we consider that the relevant quantum system under mea-
surement interacts with its environment. Defining the quan-
tum state of the total system as W, which includes both the
quantum system and its environment, and considering that the
projective measurement in a transformed reference is per-
formed only for the relevant system, the tomogram for the
relevant system can be defined as

( ) ( )w a I W W

a U U a

( , ) Tr ˆ ( ) Tr ˆ ( ) Tr

( ) ( ) ,

(6)

a aE S E

S
†

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ξ Π ξ Π ξ

ξ ρ ξ

= ⊗ =

=

where Tr, TrS and TrE denote the trace operations over the
total system, the relevant quantum system and its environ-
ment, respectively, and IE is the identity operator for the
environment. In equation (6), the quantum state being
measured can be treated as a reduced system obtained by
averaging over the environmental state and can be defined as

WTrS Eρ = . While the tomogram for an open system is
described with a dynamical map [22, 24] and relaxation
process under a Markovian approximation [25, 26],
equation (6) enables us to reconsider these tomograms from
a unified viewpoint that includes non-Markovian dynamics.

In the μSR experiments, we detect positrons emitted from
muons that are injected into a sample material [32]. Since the

2
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positrons are preferentially emitted along the direction of
muon spin, the detection of positrons tells us the dynamics of
muon spin which are under influence of its surroundings in
the material. Such situations show a good correspondence to
that described in equation (6) when we apply it to spin
tomograms as is shown in the next section.

3. Spin tomography

Let us consider a state of spin with magnitude j under the
influence of environmental effects using the spin tomogram
devised in [13–17, 20–22]. Defining an operator of the spin as
Ŝ , which has a z-component of Ŝz, and defining the simulta-

neous eigenstate of Ŝz and Ŝ
2
as j m,∣ 〉, we obtain

S j m m j m S j m j j j mˆ , , , ˆ , ( 1) , , (7)z
2= = +

which gives the probability of finding the spin along the z-
axis as j m j m, ,m mS, , Sρ ρ= 〈 ∣ ∣ 〉. In spin tomography, the
unitary transformation of the projection operator rotates the
axes of the measurement, which we describe with Euler
angles ϕ, θ and ψ as

U R( ) ( , , ) e e e , (8)S S Si ˆ i ˆ i ˆz y zξ ϕ θ ψ= = ψ θ ϕ

where Ŝy is the y-component of the spin operator Ŝ .
Substituting equation (8) into (6), we obtain a tomogram that
describes the probability of the projection of the state j m, 1∣ 〉
under the influence of environmental parameters onto the
rotated z-axis in the form

( )w m

j m R R j m

D D

, , ,

, ( , , ) ( , , ) ,

( , , ) ( , , ),

(9)m j

j

m j

j

m m
j

m m m m
j

1

1 S
†

1

1 2

1, 1
( )

S, 1 , 2 1, 2
( )*∑ ∑

ϕ θ ψ

ϕ θ ψ ρ ϕ θ ψ

ϕ θ ψ ρ ϕ θ ψ

=

=
′=− ′=−

′ ′ ′ ′

where D ( , , )m m
j
1, 1

( ) ϕ θ ψ′ is the Wigner D function, which is
defined as

D d( , , ) e ( )e , (10)m m
j m

m m
j m

,
( ) i ( ) iϕ θ ψ θ= ψ ϕ

′
′

′

where

d
j m j m

j m j m

P

( )
( ) ! ( )!

( ) ! ( )!
cos

2

sin
2

(cos ), (11)

m m
j

m m

m m

j m
m m m m

( )
1 2

( , )

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

θ θ

θ θ

= + ′ − ′
+ −

×

′

′+

′−

− ′
′− ′+

with the Jacobi polynomial P x( )n
a b( , ) [35]. Using the complex

conjugation property of the Wigner D function,

D D( , , ) ( 1) ( , , )m m
j m m

m m
j

1, 2
( )* 1 2

1, 2
( )ϕ θ ψ ϕ θ ψ= −′

− ′
− − ′

in equation (9), we find that the angle ψ is not necessary to
define the spin tomogram. In the following, we omit ψ from
w m( , , , )1 ϕ θ ψ .

It has been shown that the tomogram can be inverted to
reconstruct its corresponding density operator using the

expression

( ) ( )w m D m
1

4
d d , , ˆ , , ,

m j

j

0

2

0
1 1

1

∫ ∫∑ρ
π

ϕ θ ϕ θ ϕ θ=
π π

=−

where D mˆ ( , , )1 ϕ θ is called the quantized operator, which has
been defined in several ways using the Wigner D function
[14], a dynamical Lie group [31], and the star product [22].
Moreover, the reduction of the reconstruction with the
integration over the 4π-steradian full solid angle into a finite
number of rotations is proposed in [17], which requires the
probabilities associated with only the three directions for a
spin 1

2
system. In the following, we focus on the spin

tomogram, w m( , , )1 ϕ θ , which enables the spin state to be
represented in the form of a probability function.

For a spin 1

2
system, the tomogram is given by

{ }

w
1

2
, ,

cos
2

sin
2

sin
2

cos
2

e e ,

(12)

2
S, 1

2
, 1
2

2
S, 1

2
, 1

2

i
S, 1

2
, 1

2

i
S, 1

2
, 1
2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ϕ θ

θ ρ θ ρ

θ θ ρ ρ

= +

+ +ϕ ϕ

− −

−
−

−

and w w( , , ) 1 ( , , )1

2

1

2
ϕ θ ϕ θ− = − . The tomogram

w ( , , )1

2
ϕ θ corresponds to the diagonal elements of a density

operator for a spin 1

2
system with an atomic coherent state

[36] (the inverse of which is discussed in [37]) and with a spin
coherent state [38–40].

When we consider a pure state as Sρ φ φ= ∣ 〉〈 ∣ for a
superposed state φ∣ 〉 written as

cos
2

1

2
,

1

2
sin

2
e

1

2
,

1

2
, (13)0 0 i 0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟φ

θ θ
= + −ϕ

we obtain

cos
2

cos
2

sin
2

e

cos
2

sin
2

e sin
2

. (14)S

2 0 0 0 i

0 0 i 2 0

0

0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ρ

θ θ θ

θ θ θ
=

ϕ

ϕ

−

In figure 1, we show a plot of w ( , , )1

2
ϕ θ for Sρ with

00 0θ ϕ= = in equation (14) as a 3D representation of a
curved surface. The distance between the origin and each
point on the surface is the probability observed in the rotated

Figure 1. 3D representation of the tomogram for the case of
00 0θ ϕ= = in equation (14).
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reference with the polar angle ( , )θ ϕ of the corresponding
point on the surface.

There is a small probability in the region of
2

θ π⩽ <π ,
which means that a near-opposite direction may be found in a
pure state , ,S

1

2

1

2

1

2

1

2
ρ = ∣ 〉〈 ∣ as the projection of m 1

2
= onto

the rotated reference frame in ( , )θ ϕ . This figure clearly
shows that the spin tomogram can describe the quantum
nature of a density operator.

In the next section, we apply the obtained spin tomogram
to an open system where the time evolution of the spin 1

2
system is described with the spin-boson model.

4. Application to a spin-boson model

Let us consider the dynamics of an open system, which is
described by a relevant spin 1

2
system that interacts with its

environment. We consider that the environment consists of an
infinite number of bosons. As an example of the spin-boson
model, we take a system with a total Hamiltonian  of

, (15)S E SE   = + +

where S is the relevant spin 1

2
system, E represents the

environment and SE denotes the system–environment
interaction. These terms are defined as

( )

m m b b

g b b

, ,

( 0 1 1 0 ), (16)

m

m

k

k k k

k
k k k

S

0,1

E
†

SE
†⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

 



∑ ∑

∑

ε ω= = ℏ

= ℏ + +

=

where 0 ,1

2

1

2
∣ 〉 = ∣ − 〉 and 1 ,1

2

1

2
∣ 〉 = ∣ 〉, and bk

† and bk are the
creation and annihilation boson operators of the kth mode of
the environment, and 1 0 0ε ε ω− = ℏ .

The time evolution of the density operator for the total
system, W(t), is described with the Liouville–von Neumann
equation as

t
W t W ti

d

d
( ) [ , ( )]. (17)ℏ =

To obtain the dynamics of the relevant system
t W t( ) Tr ( )S Eρ = under the system–environment interaction,

we use the generalized master equation approach.
We assume that the initial condition of the total system

can be described by a factorized form comprising the relevant
system and the environment as W (0) (0)S Eρ ρ= , where we
define (0)Sρ and Eρ as the initial states of the relevant system
and the environment, respectively. We set Eρ to be in Gibbs

states such as exp[ ]
ZE
1

E E
E

ρ β= − , where we define the

partition functions as Z Tr exp[ ]E E E Eβ= − with an inverse

temperature
k TE

1

B
β = for the Boltzmann constant kB. In

general, the assumption of the factorized initial condition is
justified for weak system–environment interactions. However,
in the μSR experiment, the factorized initial condition
represents the situation where the muons are initially injected
into a material.

We use the time-convolutionless type of generalized
master equation [41–44] in the form

( )( )( )

t
t

t

t

d

d
( )

i
, ( )

d Tr i (0) i ( ) ( ) ,

(18)

t

S

S S

0
E SE SE E S

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦



 ∫

ρ

ρ

τ τ ρ ρ

= −
ℏ

+ −

where t( )SE is defined as

[ ]t A t A( )
1

( ), , (19)SE SE =
ℏ

for an arbitrary operator A, and t( )SE is the Heisenberg
picture of SE , which is defined as

t( ) e e (20)t t
SE

(i )
SE

(i )0 0  = ℏ − ℏ

with 0 S E  = + . Note that equation (18) is written in the
original picture and not in the interaction picture.

In equation (18), we take up to the second order of the
‘ordered’ cumulant. The first ‘ordered’ cumulant vanishes
because Tr 0E E SEρ = for this model, as expressed in
equation (16).

We transform the reduced density operator t( )Sρ into a

vector using t t t t t( ) ( ( ), ( ), ( ), ( ))T
S S,00 S,01 S,10 S,11ρ ρ ρ ρ ρ∣ 〉 =

[45], which gives [46]

t T t t( ) exp d ( ) (0) , (21)
t

S
0

S

⎡
⎣⎢

⎤
⎦⎥∫ρ Ξ ρ= ′ ′+

with

t

V V

Y Y

Y Y

V V

( )

d

( ) 0 0 ( )

0 ( ) ( ) 0

0 ( ) ( ) 0

( ) 0 0 ( )

.

(22)

s

t

0

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
∫

Ξ Ξ

τ

τ τ
τ τ
τ τ

τ τ

=

−

−
−

−
−

+ −

+ −

+ −

+ −

In equation (22), sΞ is a diagonal matrix with diagonal
elements of [0, i , i , 0]0 0ω ω− and

{ }V ( ) ( )e ( )e , (23)i i0 0τ Φ τ Φ τ= + −ω τ ω τ
±

∓ ±

Y ( ) 2 ( ( ))e , (24)i 0Rτ Φ τ= ω τ
±

∓

with

( )g b b b b( ) e e . (25)
k

k k k k k
2 † i † ik k∑Φ τ = +ω τ ω τ−

Equation (21) demonstrates that the time dependence of
the diagonal and off-diagonal elements of the density operator
are decoupled. Moreover, equation (21) is an extension of
equation (31) in [26], which can be used to describe non-
Markovian dynamics.

When we use continuous spectral density for the
coupling strength gk in equation (25) as

4
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h g( ) ( )
k k k

2∑ω δ ω ω≡ − , we obtain

{ }h n n

h n

( )

d ( ) ( )e (1 ( ))e

d ( ){(1 2 ( ))cos( ) i sin( )},

(26)

0

i i

0

∫
∫

Φ τ

ω ω ω ω

ω ω ω ωτ ωτ

= + +

= + −

ωτ ωτ
∞

−

∞

with n ( ) 1 (e 1)ω = −β ωℏ .
Using the time evolution of the reduced density operator

described by equation (21) in equation (12) with the corre-
spondence as t( )S, , S,111

2
1
2

ρ ρ↔ , t( )S, , S,001
2

1
2

ρ ρ↔− − and so

on, we obtain the dynamics for a tomogram for an open
quantum system.

When we set the upper limit of the integral in the second
term in equation (27) to infinity, we obtain the semi-group
type of generator, the so-called Gorini–Kossakowski–Sudar-
shan–Lindblad (GKSL) form [47]. In the next section, we
numerically evaluate the dynamics of the elements of the
density operator and tomogram by describing h ( )ω as the
Ohmic spectral density for both the non-Markovian and
GKSL (Markovian) cases.

5. Numerical evaluation of spin tomogram

Let us consider the Ohmic spectral density with an expo-
nential cutoff, h s( ) exp[ ]cω ω ω ω= − , where s is the cou-
pling strength and cω is the cutoff frequency. In this case, an
analytic form of ( )Φ τ can be expressed as

( )
( )

s

( )

1 i

1

1
1

1
i ,

(27)

c c

c
c

2 2

2 2 2 2

⎧
⎨⎪
⎩⎪

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟
⎫
⎬⎪
⎭⎪

R

Φ τ

ω τω

τ ω β
ψ

βω
τ
β

=
−

+
+ ′ + −

with z z( ) ( )
z

d

d
ψ ψ′ = where z( )ψ is a polygamma function

defined in terms of the Euler Gamma function z( )Γ as
z z z( ) ( ) ( )

z

d

d
ψ Γ Γ= .

Substituting equation (27) in (21), we obtain the time
evolution of t( )00ρ and t( )01ρ . We scale the time variable as
t t˜ 0ω= and the cutoff frequency as ˜c c 0ω ω ω= and set
s = 0.01, which means a weak system–environment interac-
tion. In figure 2, the time evolution of t(˜)00ρ is shown for an

initial condition of a pure state determined by 0 0
3

4
θ ϕ= = π in

equation (14) and for the environmental temperature T
determined as k T 5B 0ω= ℏ .

Increasing ˜cω from 0.3 to 3 for the non-Markovian cases
(solid lines in figure 2), the behavior changes from oscillatory
to monotonic, with both cases asymptotically approaching a
stationary value determined by the environmental tempera-
ture. Because the cutoff frequency cω corresponds to the
reciprocal of the correlation time of the system–environment
interaction, the oscillation for ˜ 0.3cω = indicates back action
from the environment because of the long system–environ-
ment correlation time. The Markovian GKSL cases (for
˜ 0.3cω = and 3) are given in the dashed lines in figure 2, both

of which exhibit monotonic decay. The difference between
the non-Markovian and Markovian cases for ˜ 0.3cω = is
larger than that for ˜ 3cω = . Because the Markovian GKSL
form is obtained on the assumption that the system–envir-
onment correlation time is infinitely short, this feature is
reasonable.

Figure 3 shows the time evolution of t( (˜))01R ρ and
t( (˜))01I ρ for ˜ 0.3cω = with the same parameters as in

figure 2. The solid lines show the non-Markovian cases and
the dashed lines refer to those for the GKSL form. For both
cases, the oscillation of the off-diagonal element persists for a
long time because of the long system–environment correla-
tion time as determined by ˜ 0.3cω = . The amplitude of the
oscillation for the non-Markovian cases undergoes a faster
decay than for the Markovian cases, and thus reflects the
decay occurring in the diagonal elements.

Figure 2. Time evolution of t(˜)00ρ for s = 0.01 with changing

˜ 0.3cω = and ˜ 3cω = for an initial condition of a pure state

determined by 0 0
3
4

θ ϕ= = π in equation (14) and for the environ-

mental temperature T determined as k T 5B 0ω= ℏ . The solid and
dashed lines refer respectively to the non-Markovian cases and those
obtained with the GKSL form.

Figure 3. Time evolution of t( (˜))01R ρ and t( (˜))01I ρ for ˜ 0.3cω = .
All other parameters are the same as in figure 2. The solid and
dashed lines refer respectively to the non-Markovian cases and those
obtained with the GKSL form.
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In figure 4, we show the time evolution of t( (˜))01R ρ and
t( (˜))01I ρ for ˜ 3cω = where all other parameters are the same

as in figure 2. The solid lines show the non-Markovian cases
and the dashed lines refer those for the Markovian GKSL
form. For both cases, the oscillations of the off-diagonal
element decay with time because of the short system–envir-
onment correlation time corresponding to ˜ 3cω = . The eva-
luations for the Markovian form show a faster decay than for
the non-Markovian cases which corresponds to the feature in
the diagonal elements.

In figure 5, we show the time evolution of a tomogram
w ( , , , )1

2
ϕ θ ψ for ˜ 0.3cω = at t̃ 1, 3, 5, 7= for non-Marko-

vian cases. All other parameters are the same as in figure 2.

The oscillation of t(˜)00ρ and t(˜)01ρ , which persists for a long
time as shown in figures 2 and 3, indicates that the tomogram
rotates in this time range while retaining its asymmetrical
shape.

Figure 6 gives tomograms for the non-Markovian and
Markovian cases for ˜ 0.3cω = at t̃ 3= . Comparing these
tomograms, we find the probability of finding positive values
is slightly larger for the Markovian case than for the non-
Markovian case. This reflects the time evolution of the ele-
ments of the density operator shown in figures 2 and 3.
Tomograms for the other Markovian and non-Markovian
cases are very similar (figure 5).

In figure 7, the time evolution of the tomogram
w ( , , )1

2
ϕ θ for the non-Markovian case is shown when ˜cω is

increased to 3 for t̃ 1, 3, 5, 7= with the same parameters as

Figure 4. Time evolution of t( (˜))01R ρ and t( (˜))01I ρ for ˜ 3cω = . All
other parameters are the same as in figure 2. The solid and dashed
lines refer respectively to the non-Markovian cases and those
obtained with the GKSL form.

Figure 5. Time evolution of a tomogram w ( , , )1
2

ϕ θ for ˜ 0.3cω = at
t̃ 1, 3, 5, 7= for the non-Markovian cases. All other parameters are
the same as in figure 2.

Figure 6. The tomograms for the non-Markovian and Markovian
cases for ˜ 0.3cω = at t̃ 3= . The left (right) figure shows the non-
Markovian (Markovian) cases. All other parameters are the same as
in figure 2.

Figure 7. Time evolution of the tomogram w ( , , )1
2

ϕ θ for ˜ 3cω = at
t̃ 1, 3, 5, 7= for the non-Markovian cases. All other parameters are
the same as in figure 2.
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in figure 2. In contrast to the case with ˜ 0.3cω = shown in
figure 5, the tomogram loses its asymmetrical shape with time
as the relevant system approaches a stationary state. The
tomograms for the Markovian and non-Markovian cases
(figure 7) are very similar as expected from the time evolution
of the elements of density operator (figures 2 and 4).

6. Concluding remarks

In this paper, we developed a way to describe the quantum
tomography of an open system using a generalized master
equation. We applied this to a spin tomogram, considering a
case where the relevant spin under tomographic measurement
suffers inevitable effects from the environment. Describing
such effects with a spin-boson model where the relevant spin
interacts with a bosonic environment, we obtained a time-
convolutionless type of generalized master equation. We
transformed the obtained master equation into the Hilbert–
Schmidt space and found an analytic form of the supermatrix,
which determined the time evolution of the density operator
of the spin for the Ohmic spectral density with an exponential
cutoff. With the obtained supermatrix, we numerically eval-
uated the time evolution of elements of the density operator
and spin tomogram, which showed clear interdependency.

Here we mention the relationship between the spin
tomogram w m( , , )1 θ ϕ and the μSR experiments. If we can
place the positron detectors so as to cover the 4π steradian in
measuring an ensemble of muons, we could obtain the
tomogram of the spin state, which enables the reconstruction
of ρ by averaging a quantizer operator over the tomogram as
discussed in section 3. However, such an experimental setup
is challenging as discussed in [23]. To overcome such diffi-
culties, it has been reported in [17] that the reconstruction is
possible with a finite number of rotations which requires the
probabilities in only three directions in measuring the spin 1

2
system. Such reconstructions share similar concepts found
with the method discussed in [48]. As these methods require
the measurements of the spin state in finite directions, to
increase the accuracy of reconstruction of ρ, we need a greater
number of measurements. The graphical representation of the
probability function of spin state as discussed in this paper
provides the detailed physical background for the need for
such a great number of measurements. We believe this for-
mulation will provide the fundamental information for the
analyses of experimental techniques such as μSR over short
time scales and/or at low temperatures.
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