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Abstract
We consider quantum correlations and quantum discord phenomena for two-qubit states with X-
type density matrices in the tomographic framework of quantum mechanics. By introducing
different measurement schemes, we establish the relation between the tomographic approaches
to quantum discord, symmetric discord, and measurement-induced disturbance. In our
consideration, X-states appear as approximations of ground and low temperature thermal states
of two coupled harmonic oscillators realized by nanoelectric LC-circuits. Possibilities for
controlling the amounts of correlations and entropic asymmetry due to variation of the frequency
detuning and the coupling constant are also considered.
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1. Introduction

Inspiring experimental progress on the creation, manipulation,
and characterization of individual quantum objects has
explored new frontiers in quantum science and technologies
[1]. Due to the intriguing properties of quantum systems, they
can be viewed as a potential platform for ultra-sensitive
metrology [2], unconditionally secure communications [3],
highly efficient information processing [4]. and simulation of
complex quantum systems [5].

However, the implementation of quantum devices is
challenging, because even bipartite quantum systems exhibit
a nontrivial behavior and correlation properties. A shining
example is that of quantum discord, demonstrating a specific
type of quantum correlation in bipartite quantum systems [6–
21]. Quantum discord is a measure of quantum correlations
based on the subtraction of locally accessible information
from the total amount of quantum mutual information. The
exploration of quantum discord has inspired a new wave of
research on nonlocal properties of separable quantum states
[22] and their applications in realizing quantum algo-
rithms [23, 24].

The concept of quantum discord is associated with
quantum measurements. A powerful technique for complete
experimental characterization of quantum states and pro-
cesses in terms of nonnegative probability distribution
functions is quantum tomography [25]. The tomographic
approach was introduced for systems with continuous [26]
and discrete variables [27]. Clearly, the tomographic
approach generalizes the Shannon information theory on the
quantum domain in a very natural way. In the past few
decades, a wide class of problems in quantum information
theory, e.g. revealing new inequalities for Shannon [28] and
Rényi entropies [29–31], the tomographic approach to Bell-
type inequalities [32], quantumness tests [33], quantum
correlations and quantum discord [31, 34–36], have been
investigated in detail [37].

In the quantum optics domain, the field quadratures of an
electromagnetic mode play the role of canonical position and
momentum operators [38]. Using optical homodyne detection
[25, 39, 40], the uncertainty relations, the entropic inequalities
and the quantum discord have been experimentally verified
[41–43]. It should be noted, however, that the tomographic
approach is applicable to arbitrary quantum systems whose

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 90 (2015) 055101 (13pp) doi:10.1088/0031-8949/90/5/055101

0031-8949/15/055101+13$33.00 © 2015 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:akf@rqc.ru
http://dx.doi.org/10.1088/0031-8949/90/5/055101
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/5/055101&domain=pdf&date_stamp=2015-04-01
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/5/055101&domain=pdf&date_stamp=2015-04-01


Hilbert space is isomorphic to the Hilbert space of the har-
monic oscillator.

Recently, the possibility of applying quantum tomo-
graphy for the description of quantum states of the current and
voltage in a quantum nanoelectric circuit with a Josephson
junction has been demonstrated [44, 45]. Using symplectic
tomography [26], examples of the Gaussian states of circuits
with the Josephson junction and two coupled resonant circuits
of high quality have been considered [44]. Tomographic
expressions for the Shannon entropy, mutual information,
fidelity, and purity of the quantum states of a nanoelectric
circuit have been obtained [45].

At the same time, substantial advances in the manu-
facturing of quantum nanoelectric circuits and super-
conducting quantum interference devices have been achieved
[46]. Due to there being sufficiently low dissipation in
nanoelectric circuits, they are promising candidates for pro-
viding scalable interfaces between classical circuits and the
quantum counterparts [47]. The realization of simple two-
qubit algorithms using a superconducting quantum processor
has been demonstrated [48].

In addition to their importance in applications [46],
nanoelectric circuits and Josephson junctions with time-
varying parameters provide useful setups for a model of a
parametric quantum oscillator [49–54]. The significance of
this model has been shown in theoretical [52–56] and
experimental [57] studies of the dynamical Casimir
effect [58].

In the present work, we consider quantum correlations,
quantum discord, and entropic asymmetry for a class of states
with X-type density matrices using quantum tomography. We
are interested in several important issues. The class of X-state
density matrices considered is of particular interest because
there exists an analytical formula for the quantum discord
[10–13], which is either precise for a huge subclass of X-
states or gives a sufficiently small error [14]. A first important
problem is that of revealing the connection between the
tomographic approach to quantum discord [31, 34, 35] and
discord-related measures [6]. Using various kinds of mea-
surement schemes, we establish the relations among the
tomographic discord, symmetric discord based on the von
Neumann measurements, and measurement-induced dis-
turbance [9]. Also, we propose an analytical formula for
quantum discord as well as examining it for the set of ran-
domly generated two-qubit states. Furthermore, we combine
our consideration with quantum causal analysis [59–62],
which allows us to reveal significant properties in the entropic
asymmetry of states with X-type density matrices [63].

The connection of quantum discord with well-con-
trollable and easily implementable physical systems opens a
way to its experimental investigation. There are several
notable proposals for realizing quantum states with X-type
density matrices for biparticle systems in experiments: spin-
1 2 particles with the XY Hamiltonian in the external magnetic
field [15]; two-level atoms, driven by a laser field interaction
[16]; coupled superconducting circuits, based on Josephson
junctions [17]; and others. Recently, it has been demonstrated
that two-qubit X-states emerge in the ground states of a large

class of Hamiltonians, including the XY model, the XXZ
model, and the transverse field Ising model [18]. In view of
the aforementioned progress in the manufacturing, char-
acterization and manipulation of superconducting circuits
[46–48, 64, 65], we suggest obtaining X-states as approx-
imations of ground and low temperature thermal states for a
system of two coupled harmonic oscillators, realized using
nanoelectric LC-circuits (figure 1). Thus, the second question
concerns the controllability of the amounts of quantum cor-
relations and entropic asymmetry through variation of the
frequency detuning and the coupling constant of two coupled
nanoelectric LC-circuits. We are also interested in the
robustness of correlation properties with respect to the con-
trollable parameters of the physical system and environment.

The paper is organized as follows. We review quantum
tomography for discrete variables, tomographic information
measures, tomographic quantum discord, and causal analysis
in section 2. Using various measurement schemes, we
establish the connection between tomographic discord and
discord-related measures. In section 3, we study various
measurement schemes for X-states. Subsequently, we suggest
an analytical formula as well as verifying it on the set of
randomly generated two-qubit states. X-states are obtained as
approximations of ground and low temperature thermal states
for two coupled nanoelectric LC-circuits in section 4. We
investigate correlation properties of the two-qubit system with
an X-type density matrix as a function of the controllable
parameters of our physical system: the frequency detuning
and the coupling constant of the circuits. Finally, we give the
conclusions and prospects in section 5.

2. Quantum tomography

In general, quantum states are described via the density
operator S ρ ∈ˆ ( ), where S ( ) is the set of positive
operators of unit trace ρ =Tr ˆ 1 in a Hilbert space .

For the finite-dimensional Hilbert space case, we can
introduce quantum tomograms as follows:

  ρ= { }{ }U U m U U m( ) ( ) ˆ , (1)m
†

Figure 1.Model of a two-qubit system with an X-type density matrix
ρAB. These states appear as approximations of the ground and low
temperature thermal states of two nanoelectric LC-circuits coupled
through the mutual inductance L12.
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where ∣ 〉m{ } is the complete set of orthonormal vectors,
representing a measurement basis, and ∈U NSU( ) is the
unitary matrix.

Having a fair probability distribution function, quantum
tomograms are positive and normalized:

 ∑⩾ =U U( ) 0, ( ) 1.m m m

For qubit systems with  =dim 2 and = ∣ 〉 ∣ 〉m 0 , 1 , the
generic form of definition (1) reduces to the SU(2) case [27].
Thus, a matrix ∈U SU(2) can be given in the parameterized
form

θ ϕ θ θ
θ θ

= = −
ϕ

ϕ−( )U U ( , ) cos 2 sin 2
sin 2 cos 2

e 0

0 e
, (2)

i 2

i 2

⎛
⎝⎜

⎞
⎠⎟

where θ and ϕ correspond to the Bloch sphere rotation.

2.1. Mutual information

Let us consider a bipartite state AB with the following density
operator:

S   ρ ∈ = ⨂( )ˆ ,AB AB A B

where the density operators of the subsystems have the forms

S S ρ ρ ρ ρ= ∈ = ∈( ) ( )ˆ Tr ˆ , ˆ Tr ˆ .A B AB A B A AB B

In quantum information theory, the full amount of cor-
relation between subsystems is measured by the quantum
mutual information:

= + −I S S S , (3)A B AB

where SA, SB and SAB are the von Neumann entropies, given
by the general expression

ρ ρ= − ( )S Tr ˆ log ˆ . (4)

Here, we take the logarithm to base 2.
In the tomographic picture of quantum mechanics, the

bipartite quantum state can be described by a tomogram given
in the following form:

 ⨂ = ⨂{ }( ) ( )U U U U ,AB A B AB A Bij

where UA and UB are operators which describe local
orthogonal projective measurements on subsystems A and
B. Then, the tomograms of the subsystems take the form

  
  

∑

∑

= = ⨂

= = ⨂

{ }
{ }{ }

{ }( ) ( ) ( )

( ) ( ) ( )

U U U U

U U U U

,

.

A A A A j AB A B

B B B B i AB A B

i ij

j ij

Being, on the one hand, probability distribution functions,
and, on the other hand, applicable for the description of
quantum states, quantum tomograms allow us to study both
classical and quantum correlations between subsystems in
bipartite quantum states.

In this way, we can introduce the tomographic Shannon
entropy [28] calculated for the tomogram  U( ):

 ∑= −H U U U( ) ( ) log ( ). (5)
m m m

Thus, one can describe the amount of correlation obser-
vable via local measurements in the bipartite system AB via
the tomographic mutual information:

= + − ⨂( ) ( ) ( ) ( )J U U H U H U H U U, , (6)A B A A B B AB A B

where H U( )A A , H U( )B B and ⨂H U U( )AB A B are tomographic
Shannon entropies calculated using equation (5) for  U( )A A ,
 U( )B B and  ⨂U U( )AB A B , respectively.

Expression (6) shows that the tomographic mutual
information is a straightforward analog of (3), while the
tomographic Shannon entropy (5) generalizes the von Neu-
mann entropy (4). The value for the tomographic mutual
information (6), clearly, depends on operators UA and UB.

2.2. The discord

The conventional approach [6] is to define the quantum dis-
cord as the difference between the total correlations (3) and
the classical correlations obtained after a measurement per-
formed on one subsystem (e.g., on the subsystem B):

= − ⩾
Π ΠD I Jmax 0, (7)

{ } { }
B B( ) ( )

b
b

with ΠJ{ }
B( )

b
being the quantum mutual information calculated

by using Equation (3) for the state

∑ρ ρ Π= =M M M M, ,AB
B

b

b AB b b b b
( ) † †

where the quantity Πb introduced is the positive-operator-
valued measure (POVM) in the Hilbert space B.

On the other hand, from definitions (3) and (6), one can
construct the tomographic discord as a tomographic measure
of the quantumness of bipartite state correlations:

= −( ) ( )D U U I J U U, , . (8)A B A B

The tomographic measure (8) resembles the concept of
symmetric quantum discord [20]. The difference is as follows.
First, in the definition (7) of the quantum discord, a
measurement is performed only on one subsystem. Second,
the measurement in (8) is described via a set of orthogonal
projectors (von Neumann measurements). Finally, there is no
maximization procedure in the definition (8).

Due to the dependence of the tomographic mutual
information (6) and, therefore, expression (8) on the unitary
operators UA and UB, the amount of observed correlation (or
quantumness) directly depends on the measurements.

We consider three different approaches to the unambig-
uous definition of such operators.

2.2.1. The optimal measurement scheme. The first approach
follows directly from the definition of symmetric quantum
discord, related to the von Neumann measurements [21]. The
idea is to consider the measurement operators UA and UB in
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such a way that they maximize the tomographic mutual
information (6):

=( ) ( )U U J U U, arg max , . (9)A B
U U

A B
opt opt

,A B

The resulting tomogram of the state:

 = ⨂( )U U (10)AB AB A B
opt opt opt

makes quantity (8) attain its minimal possible value:

= − = ( )D I J J J U U, , . (11)A B
opt opt opt opt opt

Due to the existence of the maximization procedure in
equation (9), we label this approach to the choice of unitary
operators UA and UB with the corresponding correlation
measure as the optimal tomographic discord approach.

2.2.2. The diagonalizing measurement scheme. An
alternative natural approach is to consider the unitary
operators UA and UB in such a way that the density
matrices of the subsystem remain undisturbed after the
measurement [34]. In other words, the density matrices of
the subsystems after the action of the operators become
diagonal in the measurement basis.

Applying unitary transformations with these operators to
the density matrices of the subsystems, we find that the
Shannon entropies of the subsystems become equal to the von
Neumann entropies:

= =͠ ͠( ) ( )H U S H U S, .A A A B B B
diag diag

We use the tilde and the superscript ‘diag’ to identify these
operators.

However, there is still ambiguity as regards their choice.
For example, for maximally entangled states, the density
matrix of the subsystems remains diagonal (and proportional
to the identity matrix) under any possible rotation operator.

Therefore, we consider the set of operators given by

= ͠ ͠
∼ ∼ ( )( )U U J U U, arg max , , (12)A B
U U

A B
diag diag

,

diag diag

A B
diag diag

not only to make the density matrices of the subsystems
diagonal, but also to maximize the level of correlations
described by equation (6).

We denote the corresponding tomogram as follows:

 = ⨂( )U U . (13)AB AB A B
diag diag diag

As a result, one can introduce the diagonalizing tomographic
discord with the following form:

= − = ⨂ −

=

( )
( )

D I J H U U S

J J U U

,

, . (14)

AB A B AB

A B

diag diag diag diag

diag diag diag

Introduced in the tomographic framework in [34], this
quantity is also well-known as the measurement-induced
disturbance [9]. It should be noted that (14) was named the
‘tomographic discord’ in the work [35]; however, in this work
we prefer to use the term ‘diagonalizing tomographic discord’

because we also consider other approaches, which are
inherently tomographic as well.

2.2.3. The symmetrizing measurement scheme. Here, we
point out one more auxiliary approach. This approach arises
from the fact that for certain classes of states (notably, for X-
states), it is useful to consider the unitary operators such that
tomograms of the subsystems become uniform distributions;
e.g., for two-qubit states, the corresponding tomograms read

 = =͠ ͠( ) ( )U U {1 2, 1 2}.A A B B
sym sym

Consequently, the operators introduced transform the Shan-
non entropies (see equation (5)) of the subsystems to ones
equal to their maximum possible values:

= =͠ ͠( ) ( )H U H U 1.A A B B
sym sym

Like in giving the definitions (10) and (12), we add a
requirement that the tomographic mutual information (6)
attains its maximum possible value:

= ͠ ͠
∼ ∼ ( )( )U U J U U, arg max , . (15)A B
U U

A B
sym sym

,

sym sym

A B
sym sym

Finally, the corresponding measure reads

= − = + ⨂ −

= ⨂
( )

( )
D I J I H U U

J J U U

2,

. (16)

AB A B

A B

sym sym sym sym

sym sym sym

We label this approach as the symmetrizing discord approach.

2.3. Entropic asymmetry

The entropic asymmetry of particular mixed states is another
interesting and important issue [63]. Due to such asymmetry,
the decoherence acting on different parties leads to different
rates of correlation decay. In other words, the question of the
robustness of parties appears.

With this in mind, quantum causal analysis [59–62] and
its tomographic generalization [35] have been proposed. This
approach was successfully implemented for two-qubit [60]
and three-qubit [61] states and atom–field interactions [62].
We note that pure bipartite states always have equal von
Neumann entropies of the subsystems due to the Schmidt
decomposition. In view of this, they are not of interest.

Quantum causal analysis is based on a pair of indepen-
dence functions [59]:

=
−

=
−

i
S I

S
i

S I

S
, ,A B

A

A
B A

B

B

which can be used to provide the measure of the entropic
asymmetry:

= − =
−

d i i I
S S

S S
. (17)AB A B B A

A B

A B

This measure of asymmetry (17) has the following useful
properties:

(i) positive values of dAB correspond to a case where the
first subsystem plays a decisive role in the correlation as
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compared to the second one (in causal analysis, the first
subsystem is labeled the ‘cause’, while the second one
is called the ‘effect’);

(ii) = −d dAB BA, i.e., the sign of dAB defines the direction of
the asymmetry;

(iii) the magnitude ∣ ∣dAB corresponds to the extent of the
asymmetry of the roles of the subsystems in the
correlations.

In turn, the tomographic approach to the amount of
asymmetry [35] relies on the tomographic independence
functions:

=
−

=
−

( )
( ) ( )

( )

( )
( ) ( )

( )

i U U
H U J U U

H U

i U U
H U J U U

H U

,
,

,

,
,

, (18)

A B A B
A A A B

A A

B A A B
B B A B

B B

tom

tom

with the corresponding measure of asymmetry given in the
form

= −( ) ( ) ( )d U U i U U i U U, , , . (19)AB A B A B A B B A A B
tom tom tom

Substituting in (18) the unitary operators UA and UB in
the forms (9), (12), and (15), we obtain three definite values
of the tomographic asymmetry: dAB

opt, dAB
diag and dAB

sym,
respectively. However, the third value is of no interest since
we always have the identity =d 0AB

sym .
Additionally, we note that the diagonalizing scheme has

the following important property:

= = − >
d

d

J

I

D

I
1 0.AB

AB

diag diag diag

Thus, this scheme does not change the direction of the
original asymmetry, but it can decrease its extent.

3. The tomographic quantum discord for X-states

In the current paper, we give our main attention to the class of
two-qubit states with X-type density matrices:

ρ

ρ ρ
ρ ρ
ρ ρ

ρ ρ

=

0 0

0 0

0 0

0 0

. (20)AB
X

11 14

22 23

23 33

14 44

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

The constraints on the elements ρ{ }ij are the following: (i) all
diagonal elements are nonnegative and form a unit trace; (ii)
the off-diagonal elements are also nonnegative and their
magnitudes are bounded by inequalities:

ρ ρ ρ ρ ρ ρ⩽ ⩽, .23
2

22 33 14
2

11 44

We note that any Hermitian matrix in the form (20) with
complex off-diagonal elements can always be transformed
into an X-type matrix with all elements nonnegative by means
of a suitable choice of the basis [11].

The X-states have paramount importance for the concept
of quantum discord [6]. Recently, this class of states has
attracted a great deal of interest in the context of a search for
an analytical formula for its computation [10–14].

The intention of our work is to study how the optimal
(11), diagonalizing (14), and symmetrizing (16) discords
relate to each other for the case of X-states (20).

3.1. Diagonalizing and symmetrizing tomograms

For X-states, tomogram (1) parameterized by the Bloch sphere
rotation angles:

  ϕ θ ϕ θ= ( ), , ,AB AB A A B B

can be easily obtained from diagonal elements of the initial
density matrix (20) after the application of the rotation
operator ϕ θ ϕ θ⨂U U( , ) ( , )A A B B (where both operators
have the form (2)). The explicit results of our calculations
are presented in appendix A.

Here, we consider the main entropic properties:

(i) Due to symmetry considerations, we restrict to studying
parameters in the following regions:

θ θ π ϕ ϕ π∈ ∈, [0, 2], , [0, ].A B A B

(ii) The tomograms of the subsystems appear to be
functions only of the rotation angles θA and θB:

   θ θ= =( ) ( ), .A A A B B B

Moreover, at θ θ= = 0A B , the tomographic Shannon entro-
pies (5) are equal to the von Neumann ones (4):

θ θ= = = =( ) ( )H S H S0 , 0 ,A A A B B B

whereas for the condition θ θ π= = 2A B , they attain their
maximum values:

θ π θ π= = = =( ) ( )H H2 2 1.A A B B

(iii) Since all of the matrix elements in (20) are real, the
maximum value of the tomographic mutual information

ϕ θ ϕ θJ ( , , , )A A B B at fixed values of the angles θA and
θB is obtained at ϕ ϕ= = 0A B .

From (ii) and (iii), it follows directly that the condition
θ θ ϕ ϕ= = = = 0A B A B corresponds to a diagonalizing
tomogram with the following form:

 ρ= = …{ }i, 1, , 4 . (21)AB ii
diag

Meanwhile, a symmetrizing tomogram is obtained for
θ θ π= = 2A B and ϕ ϕ= = 0A B , and it has the form

 κ κ κ κ= + − − +{ }1

4
,

1

4
,

1

4
,

1

4
, (22)AB

sym

with the parameter κ ρ ρ= +( ) 214 23 . The explicit formulas
(21) and (22) make it straightforward to compute the
diagonalizing (14) and symmetrizing (16) discords as well
as the corresponding asymmetry measure.
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3.2. The optimal tomogram

To resolve a problem concerning the optimal measurement
scheme, we implement a numerical procedure on a set of
3 × 103 randomly generated X-states, similar to that in the
work [35]. The methodology used for the generation of ran-
dom X-states is described in appendix B.1.

The results concerning the comparison between Ddiag and
Dopt, as well as that between dAB

diag and dAB
opt, are presented in

figures 2(a) and (b). Analyzing these numerical results, one
can conclude that the class of all X-states generated separates
into two subclasses:

(i) the first subclass with (circles in figure 2(a))

= =D D d d, ;opt diag opt diag

(ii) the second subclass with (crosses in figure 2(a))

 < = =D D d, 0, .AB AB
opt diag opt opt sym

We conclude that for X-states, the optimal tomogram is either
the diagonalizing or the symmetrizing one:

= ( )D D Dmin , . (23)opt diag sym

Thus, one can label the first subclass (i) of X-states as the
‘tomographically asymmetric’ subclass, and the second one
(ii) as the ‘tomographically symmetric’ subclass (see
figure 2(b)).

We note that this result is quite in the spirit of the ana-
lytical formula for the canonical quantum discord for X-states,
obtained in [10], where the optimal measurement for one
subsystem only should be performed along either the z axis or
the x axis of the Bloch sphere (σx or σz measurements). As has
been demonstrated in [12], this approach is not appropriate
for all varieties of X-states. In our case, the measurement is
performed over both subsystems. Then, the established
equation (23) seems to be correct for the whole class of states
with X-type density matrices. As far as we know, for the two-
qubit case the question of whether orthogonal projective
measurements, as compared to POVMs of rank 1, maximize
the classical correlations is still open.

Besides, pure biparticle quantum states that are not
maximally entangled belong to a tomographically asymmetric
subclass of the X-states with the optimal measurement basis
being defined by their Schmidt decomposition. We note that
for maximally entangled states, the diagonalizing and sym-
metrizing schemes coincide.

Moreover, for pure states the following equalities hold:

= = = = = =D D D D J I
1

2
, (24)A Bopt diag ( ) ( ) diag

where D A( ) and D B( ) are canonical discords (7), obtained from
measurements on A and B, respectively; and  is the
entanglement of the formation, just being equal to the
entropies SA=SB in this case.

In figures 2(c) and (d), we show results obtained for
randomly generated arbitrary mixed two-qubit states. The
generation of random arbitrary mixed two-qubit states is
discussed in appendix B.2.

One can conclude that in the general case the optimal
measurement scheme is different both from the diagonalizing
one and from the symmetrizing one. Thus, we obtain

⩽ ( )D D Dmin , .opt diag sym

Moreover, the direction of the asymmetry defined by

=( ) ( )d dsign signAB AB
diag

may be opposite to that for ( )dsign AB
opt .

Thus, this separation of the subclasses with respect to the
correlation measure and measures of the entropic asymmetry
introduced is not universal for all two-qubit states (see
figure 2(d)), i.e., it is a specific feature of X-states.

4. Ground and thermal states of quantum circuits

In this section, we propose physical realizations for states
with X-type density matrices as approximations of ground and
low temperature thermal states of coupled quantum nano-
electric circuits (see figure 1).

Figure 2. The comparison of the tomographic mutual information (6) and the entropic asymmetry for ×3 103 randomly generated X-states
(see appendix B.1) and ×3 103 arbitrary mixed two-qubit states (see appendix B.2). In (a) we show a comparison of the tomographic mutual
information (6) for X-states obtained from the diagonalizing (14) measurement scheme to that obtained from the optimal (11) measurement
scheme. In (b) we show the asymmetry measure obtained from the diagonalizing (14) measurement scheme versus the asymmetry obtained
from the optimal (11) measurement scheme. One can see the separation into tomographically asymmetric states (crosses) and
tomographically symmetric states (rhombuses). In (c) and (d) the same quantities are shown for randomly generated states (circles).
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The Hamiltonian of a system of two circuits with
inductances L1, L2 and capacitors C1, C2, coupled via the
mutual inductance L12, reads

  = + + =

= 

V V L I I

I Q L

ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ,

ˆ, ˆ i , (25)i i i

1 2 12 1 2

⎡⎣ ⎤⎦

where Î is the current operator and Q̂ is the operator of charge
on the plates of a capacitor with the standard commutation
relation. Here, the Hamiltonian,

 = + =
L I Q

C
jˆ

ˆ

2

ˆ

2
, 1, 2, (26)j

j j j

j

2 2

corresponds to a single resonant circuit.
We assume that the energy of thermal fluctuations in

circuits is sufficiently smaller than the energy of quanta, i.e.,
ω > k Tj B , where T is the temperature, ω = −L C( )j j j

1 2 is
the resonant frequency, and kB is the Boltzmann constant.
Thus, we can consider circuits as quantum ones.

Due to the duality between mechanical oscillators and
circuits, it is convenient to introduce canonical position and
momentum operators:

δ

= − =

=

−



x L C I p C Q

x p

ˆ ˆ , ˆ ˆ ,

ˆ , ˆ i , (27)

j j j j j j j

j k jk

1 2 1 2

⎡⎣ ⎤⎦

where δ jk stands for the Kronecker symbol.
Using (27), we can rewrite the terms of Hamiltonian (25)

in the form

 ω
ω ω= + =

p x
V g x xˆ

ˆ

2

ˆ

2
, ˆ ˆ ˆ , (28)j

j j j
2 2 2

1 2 1 2

where = −g L L L( )12 1 2
1 2 is the dimensionless coupling

constant.
One can diagonalize Hamiltonian (25) using the cano-

nical transformation to new canonical variables [67]:

Θ

Θ

=

=

X

X
M

x

x

P

P
M

p

p

ˆ

ˆ
( )

ˆ

ˆ
,

ˆ

ˆ
( )

ˆ

ˆ
, (29)

1

2

1

2

1

2

1

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

where Θ Θ=M U( ) ( , 0) is the rotation operator and

Θ
ω ω

ω ω
=

−
g

arctan
2

.1 2

1
2

2
2

As a result, we obtain Hamiltonian (25) in the form of
two unit-mass non-interacting oscillators:

 Ω Ω
= + + +

P X P Xˆ
ˆ

2

ˆ

2

ˆ

2

ˆ

2
, (30)1

2
1
2

1
2

2
2

2
2

2
2

with new resonant frequencies:

Ω ω Θ ω Θ ω ω Θ
Ω ω Θ ω Θ ω ω Θ

= + +
= + −

g

g

cos sin sin 2 ,

sin cos sin 2 .

1
2

1
2 2

2
2 2

1 2

2
2

1
2 2

2
2 2

1 2

As a computational basis for our further consideration,
we choose the eigenstates ∣ 〉m n, of the Hamiltonian  +ˆ ˆ1 2

such that

 + = = …( ) m n E m n m nˆ ˆ , , , , 0, 1, 2, ,m n1 2 ,

with ω ω= + + + E m n( 1 2) ( 1 2)m n, 1 2 , where m and n
are numbers of energy quanta of the oscillators.

We denote the eigenstates of Hamiltonian (30) with tildes
over integers (e.g., ∣ 〉1̃, 2̃ ):

 + + =
= …

( )V m n E m n

m n

ˆ ˆ ˆ ˜ , ˜ ˜ , ˜ ,

, 0, 1, 2, ,

m n1 2 ˜ , ˜

with Ω Ω= + + + E m n( 1 2) ( 1 2)m n˜ , ˜ 1 2 .
We denote the coefficients of decomposition of these

states in the computational basis as follows:

=C i j m n, ˜ , ˜ .i j
m n
,

,

One can easily calculate them using the wavefunction of the
harmonic oscillator eigenstates:

Ψ Ω

π
Ω

Ω

= −

×

Ω

( )
( )

X
l

X

X

H( )
2 !

exp
1

2

, (31)

l
l

l
( )

1 4
2⎜ ⎟⎛

⎝
⎞
⎠

where m is the corresponding quantum number, X is the
coordinate, Ω is the frequency, and Hl stands for the
Hermitian polynomial of lth order. Thus, we obtain

∬ Ψ Ψ

Ψ Ψ

=

×

ω ω

Ω Ω
−∞
∞

( ) ( )

C x x x x

X X

d d ( ) ( )

. (32)( ) ( )

i j
m n

i j

m n

,
,

1 2
( )

1
( )

2

1 2

1 2

1 2

Here, the complex conjugation is omitted because there is no
imaginary part in the wavefunctions considered. We note that
function (31) is an even function for even m, and it is an odd
function otherwise; thus, the parity implies that =C 0i j

m n
,

, for
odd + + +i j m n.

Further, we consider projections of various states on a
two-qubit subspace:

 = span{ 0, 0 , 0, 1 , 1, 0 , 1, 1 },2qb

with the projector operator

S S Π → ( )ˆ : ( )
2qb 2qb

given in the form

Π = +
+ +

ˆ 0, 0 0, 0 0, 1 0, 1

1, 0 1, 0 1, 1 1, 1 .

2qb
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Thus, for each state ρ̂ we can obtain its two-qubit
approximation as follows:

ρ Π ρΠ

Π ρΠ
=ˆ

ˆ ˆ ˆ

Tr ˆ ˆ ˆ
.2qb

2qb 2qb

2qb 2qb⎡
⎣⎢

⎤
⎦⎥

The accuracy of the approximation can be estimated with
the parameter

α Π ρΠ= − ⩾1 Tr ˆ ˆ ˆ 0, (33)
2qb 2qb⎡

⎣⎢
⎤
⎦⎥

which is, obviously, zero for states S ρ ∈ˆ ( )2qb .

4.1. The ground state

The ground state of Hamiltonian (30) has the simple form
ψ∣ 〉 = ∣ 〉0̃, 0̃gr . Due to the parity, its projection on the sub-

space 2qb consists of only two terms:

Π = +C Cˆ 0̃, 0̃ 0, 0 1, 1 . (34)
2qb

00
00

11
00

Then, the two-qubit approximation of the state
ρ ψ ψ= ∣ 〉〈 ∣ĝr gr gr reads

ρ =
+

×

( ) ( )
( )

( )

C C

C C C

C C C

ˆ
1

0 0

0 0 0 0
0 0 0 0

0 0

, (35)

gr
2qb

00
00 2

11
00 2

00
00 2

00
00

11
00

00
00

11
00

11
00 2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

with the accuracy parameter (33) in the form

α = − −( ) ( )C C1 . (36)00
00 2

11
00 2

Like all pure states, the (35) state belongs to the class of X-
states.

4.2. The thermal state

The second state that we are interested in is a thermal state. It
is given by the general expression





ρ = −

= −

Z k T

Z
k T

ˆ
1

exp
ˆ

,

Tr exp
ˆ

,

th
B

B

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where ̂ is the Hamiltonian (30), and Z is the partition
function. More explicitly, the density operator can be written
in the following form:

∑ρ = −
⩾Z

E

k T
m n m nˆ

1
exp ˜ , ˜ ˜ , ˜ . (37)

m n

m n
th

, 0

˜ , ˜

B

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

We assume that the temperature T is low enough for us to
consider the final number of terms in (37) in a such way that
the total number of quanta in each term is not greater than 2.

Again, we use projections on the subspace 2qb. The final
form of the state (37) considered reads

ρ = =
Z

W Z Wˆ
1 ˆ , Tr ˆ , (38)th

2qb

1
1

⎡⎣ ⎤⎦

where the operator Ŵ has the form

∑Π

Π

=

× −

⩾
+ ⩽

W

E

k T
m n m n

ˆ ˆ

exp ˜ , ˜ ˜ , ˜ ˆ .

m n

m n

2qb

, 0,

˜ , ˜

B

2qb

m n 2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

In this case, the accuracy parameter (33) is given by

α = −
Z

Z
1 . (39)1

From the parity, it follows that the nonzero projections of the
vectors used in (37) are given by (see also (34))

Π

Π

Π

Π

Π

= +

= +

= +

= +

= +

C C

C C

C C

C C

C C

ˆ 0̃, 1̃ 0, 1 1, 0 ,

ˆ 1̃, 0̃ 0, 1 1, 0 ,

ˆ 1̃, 1̃ 0, 0 1, 1 ,

ˆ 0̃, 2̃ 0, 0 1, 1 ,

ˆ 2̃, 0̃ 0, 0 1, 1 .

2qb
01
01

10
01

2qb
01
10

10
10

2qb
00
11

11
11

2qb
00
02

11
02

2qb
00
20

11
20

This fact implies that the state ρ̂th
2qb (37) is an X-state.

4.3. The quantum discord for two coupled circuits

In this part, we consider different measures of correlations for
X-states, realized in two-qubit approximations of the ground
(35) and thermal states (38) of two coupled oscillators. The
measures of correlations considered are:

(i) the quantum mutual information (3);
(ii) the diagonalizing discord Ddiag (14);
(iii) the symmetrizing discord Dsym (16);
(iv) the canonical quantum discords D A( ) and D B( ) obtained

in the form (7) with measurements on the subsystems A
and B, respectively;

(iv) the entanglement of formation  .
We compute the latter using the concurrence  via a

general formula [66]:

 = + −h
1

2

1

2
1 ,2⎜ ⎟⎛

⎝
⎞
⎠

where = − − − −h x x x x x( ) log (1 ) log (1 ) is the binary
entropy function. In turn, the concurrence  for the two-qubit
density matrix ρAB is given by

 λ λ λ λ= − − −( )max 0, ,1 2 3 4

where the λi are written in terms of the eigenvalues of the
following matrix in descending order:

ρ σ σ ρ σ σ ρ= ⨂ ⨂( ) ( )R * .y y y y
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Here, a star stands for complex conjugation, and σy for the
corresponding Pauli matrix.

We use dimensionless variables, assuming that
= = k 1B . Without loss of generality, the frequency ω1 of

the first circuit is assumed to be 1, and we express the second
one via the detuning Δω: ω ω Δω= +2 1 . We consider two
types of detuning: the blue detuning (Δω > 0) and the red
detuning (Δω < 0).

We note that the optimal discord Dopt is the minimum of
the values Ddiag and Dsym (see (23)). In addition, to reveal the
extent to which our two-qubit approximation remains
appropriate, we compute the accuracy parameters (33)
and (39).

4.3.1. The ground state. We start with investigation of the
two-qubit approximation of the ground state (35). First, for
the resonance case (Δω = 0) and different values of the
coupling constant g, the results obtained are presented in
figures 3(a). We see that all measures of correlations grow
with the coupling constant g. As for all pure states (see (24)),
the tomographic discord calculated in the diagonalizing
scheme Ddiag appears to be optimal ( =D Dopt diag), and it

coincides with the canonical discords D A( ) and D B( ) as well as
with the entanglement of formation  . As state (35) is not
maximally entangled, the symmetric discord Dsym is
invariably greater than the diagonal discord Ddiag. In other
words, equality (24)holds.

Second, figure 3(b) shows the influence of detuning at
fixed value of the coupling constant (g = 0.3). The level of the
correlations decreases, but to a rather small extent. As for all
states that are not maximally entangled, the equality

=D Dopt diag holds.
The validities of the two-qubit approximation estimated

with parameter (36) are presented in figures 3(c) and (d). We
note that the variation of the accuracy parameter α (36) for
detuning Δω ≠ 0 is sufficiently small.

4.3.2. The thermal state. Here, we study the measures of the
correlations in the two-qubit approximation for the thermal
state (37).

First, for the resonance case (Δω = 0) and the coupling
constant g = 0.3, the results for the measures of the
correlations as functions of the temperature are presented in
figure 4(a). We note that in the resonant case, the two

Figure 3. Measures of correlations in the two-qubit approximation of the ground state (35): the quantum mutual information I (dashed),
symmetric discord Dsym (dot–dashed), and diagonalizing discord Ddiag (solid). In (a) we show the measures of the correlations as functions of
the coupling parameter g at the detuning Δω = 0; in (b) we show the same measures as functions of the detuning Δω at the fixed coupling
constant g = 0.3. The validities of the two-qubit approximation estimated with the parameter α (36) are shown in (c) and (d), respectively. For
the state (35) considered, the diagonalizing discord Ddiag is equal to the entanglement of formation  and the optimal discord Dopt (see
equation (24)).

Figure 4. Measures of correlations in the two-qubit approximation of the thermal state (38): the quantum mutual information I (dashed),
symmetric discord Dsym (dot–dashed), diagonalizing discord Ddiag (solid), canonical discord D A( ) (bold solid), canonical discord D B( ) (bold
dashed), and entanglement of formation  (dotted). In (a) we show the measures of the correlations as functions of the temperature T at the
resonance Δω = 0 and the coupling constant g = 0.3. In (b) we show the measures of the correlations as functions of the detuning Δω at the
coupling constant g = 0.3 and the temperature T = 0.2. The validities of the two-qubit approximation estimated with parameter α given by
(39) are shown in (c) and (d), respectively. In (e) we show the maximum possible values of I and  accessible at a given temperature and the
coupling constant g = 0.3 (solid lines), compared with the corresponding values (dashed lines) at the resonance Δω = 0. In (f) we show the
values of the detuning Δω, which correspond to the maximum values of the quantum mutual information I (dashed) and the entanglement of
formation  (dotted).
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canonical discords (7) are equal ( =D DA B( ) ( )). Furthermore,
at the temperature ≲T 0.1, they are very close to two other
correlation measures: =D Dopt diag and  . At the temperature

≳T 0.1, the diagonalizing discord Ddiag becomes an inap-
propriate measure of quantum correlations; and at ≳T 0.22,
the optimal measurement scheme changes from the diagona-
lizing one to the symmetrizing one. At higher temperatures,
the value of =D Dopt sym naturally decays, like all other
measures.

Second, for the fixed temperature T = 0.3 and the
coupling constant g = 0.3, the influence of the detuning Δω is
depicted in figure 4(b). We see that with the presence of
detuning, the equality of the canonical discords fails. Thus,
we conclude the following:

Δω
Δω

> <
> >

D D

D D

, for 0;

, for 0.

A B

B A

( ) ( )

( ) ( )

Also, one might mention that the maxima of the correlations
measured via I and  have shifted to the area with Δω > 0.
Notably, these maxima correspond to slightly different values
of the detuning. The validities of the two-qubit approximation
estimated with parameter α given by (39) are shown in (c)
and (d).

In figure 4(e), for the given temperature T = 0.2 and the
coupling constant g = 0.3, we show the maximum possible
values of I and  and how they compare to the corresponding
values obtained at resonance. One can see that the difference
for  is rather dramatic. In figure 4(f), we show the behaviors
of the detuning, which give corresponding maximum values
of the correlation measures. At high temperature, they have
different asymptotic behaviors. However, the validity of our
two-qubit approximation fails; therefore this dependence is
not of interest. As was to be expected, the two-qubit
approximation validity measured with α decreases with
growth of the temperature.

Finally, we consider the entropic asymmetry of the
thermal state (37) at finite temperature as a function of the
detuning. For the temperature T = 0.2 and the coupling
parameter g = 0.3, the results obtained are shown in figure 5.
One can see that the entropic asymmetry measured by dAB
(17) and dAB

tom (19) changes its direction exactly at the
resonance. Furthermore, the behavior is similar to that of the
asymmetry between the discords D A( ) and D B( ). The oscillator
with higher frequency (that is, B at Δω > 0 and A at Δω < 0)
always turns out to be an ‘effect’ with respect to another

oscillator. In a mechanical analogy, lower frequency
corresponds to higher mass (if we assume that the stiffness
coefficients are equal). Thus, one can conclude that in thermal
states the heavier oscillator, obviously, plays a more
important role than the lighter one.

Moreover, from the comparison with the corresponding
behaviors of the discords D A( ) and D B( ), we conclude that the
measurement made on the ‘cause’ gives us more access to
correlations than the measurement on the ‘effect’. Speaking in
the framework of quantum causal analysis, we have

<D D(‘cause’) (‘effect’). At the same time, with the growth of
asymmetry measured with dAB, the discord obtained by
measurement of the ‘effect’ tends to the optimal one.

It is interesting that at high blue detuning (Δω > 0), dAB
becomes larger than unity, which is in principle possible only
for quantum systems (for classical systems, the highest
asymmetry ∣ ∣ =d 1AB is obtained when one of the indepen-
dence functions is equal to zero, while the other tends to
unity). On the other hand, the tomographic measure dAB

tom does
not demonstrate such a high level of asymmetry in this state.

5. Conclusion and outlook

In conclusion, we point out the main results of the present
paper. We have considered a tomographic approach to
quantum discord and marked out three particular measure-
ment schemes: the optimal (11), diagonalizing (14), and
symmetrizing (16) ones. We have established the explicit
relation between the tomographic discord, the symmetric
discord based on von Neumann measurements, and the
measurement-induced disturbance [9]. More precisely, in the
general case, the optimal discord coincides with the sym-
metric discord, while the diagonalizing discord is equal to the
measurement-induced disturbance.

We have focused our attention on X-states and have
obtained that their optimal discord amounts either to the
diagonalizing discord or to the symmetrizing discord, which
implies the analytical formula (23) for its calculation. Com-
bining these results with quantum causal analysis allows us to
separate X-states into ‘tomographically asymmetric’ and
‘tomographically symmetric’ subclasses (figure 2(b)).
Numerical results with randomly generated arbitrary mixed
states have shown that this separation is a feature of X-states.

We have considered two-qubit X-states that appear as
approximations of the ground (35) and low temperature
thermal states (37) of two coupled nanoelectric LC-circuits.
We have discussed the robustness of the correlation properties
with respect to the environmental parameters, and have
shown that for the thermal state (37), blue detuning of the
second circuit can raise the amount of correlation as com-
pared to the resonance case.

Also, we have obtained that X-states appearing in cou-
pled circuits mostly belong to the ‘tomographically asym-
metric’ subclass, although variation of the parameters
(temperature or detuning) can transform the subclass of the X-
state from asymmetrical to symmetrical. This change is

Figure 5. Quantum (17) and tomographic (19) measures of the
entropic asymmetry for the thermal state (37).
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always in the direction in which the two-qubit approximation
becomes inappropriate.

We have shown that the behavior of the entropic asym-
metry, as observed by quantum causal analysis, conforms with
the behavior of the asymmetry between the canonical discords
obtained by measurement on different subsystems. In this way,
it has been found that a measurement performed on a qubit
classified by causal analysis as a ‘cause’ gives access to more
correlations than a measurement performed on the ‘effect’.

We expect the presentation of the results in the frame-
work of a real physical system of two coupled nanoelectric
circuits to open the way to experimental study of tomographic
quantum discord phenomena.
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Appendix A. The tomography of X-states

To obtain the explicit form of the tomogram for the X-state
density matrix (20), one needs to take the diagonal elements
of the matrix:

ρ ϕ θ ϕ θ

ρ ϕ θ ϕ θ

= ⨂

× ⨂

∼ ( ) ( )
( ) ( )

U U

U U

, ,

, , .

A A B B

AB
X

A A B B
† †

In this way, we obtain the following representation for
the tomogram:

where we use the notation

ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

= + − −
= − + −
= − − +

z
z

z

,
,
.

A

B

AB

11 22 33 44

11 22 33 44

11 22 33 44

The order of elements in the tomogram is governed by
the rules of standard tensor multiplication:

    = { }, , , .AB AB AB AB AB00 01 10 11

The reduced tomogram takes the simple form





θ θ

θ θ

= + −

= + −

{ }
{ }

z z

z z

1

2

1

2
cos ,

1

2

1

2
cos ,

1

2

1

2
cos ,

1

2

1

2
cos

,
A A A A A

B B B B B

without the dependences on ϕA and ϕB.

Appendix B. The generation of random two-qubit
states

B.1. The generation of random X-states

To generate the X-state density matrix (20), we use the fol-
lowing algorithm. First, we generate the diagonal elements as
follows:

ρ =
∑

=
=

p

p
p, (0, 1),ii

i

j j
i

1
4

where  a b( , ) stands for a uniform distribution on
a b[ , ].

Then we generate off-diagonal elements as follows:


ρ ϵ ρ ρ ρ ϵ ρ ρ

ϵ ϵ
= =

=
, ,

, (0, 1).
14 1 11 44 23 2 22 33

1 2

We note that this rather straightforward algorithm does not
generate states uniformly with respect to the Haar measure,
so it is quite useful for observing two possible subclasses of
X-states but is not appropriate for a study of the relative

volumes of each of the subclasses in the whole set of X-
states.

B.2. The generation of random arbitrary two-qubit mixed
states

We generate arbitrary two-qubit states using the following
form:

∑ρ ψ ψ ψ ψ=
∑ = =

−

p
p

1
,AB

j j k
k k k k k

1
4

1

4
1



θ θ θ θ θ θ ρ ϕ ϕ ρ ϕ ϕ

θ θ θ θ θ θ ρ ϕ ϕ ρ ϕ ϕ

θ θ θ θ θ θ ρ ϕ ϕ ρ ϕ ϕ

θ θ θ θ θ θ ρ ϕ ϕ ρ ϕ ϕ

=

+ + + + + + −

+ − − − + + −

− + − − + + −

− − + + + + −

( )
( )
( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

z z z

z z z

z z z

z z z

1

4

1

4
cos

1

4
cos

1

4
cos cos

1

2
sin sin cos cos

1

4

1

4
cos

1

4
cos

1

4
cos cos

1

2
sin sin cos cos

1

4

1

4
cos

1

4
cos

1

4
cos cos

1

2
sin sin cos cos

1

4

1

4
cos

1

4
cos

1

4
cos cos

1

2
sin sin cos cos

,AB

A A B B AB A B A B A B A B

A A B B AB A B A B A B A B

A A B B AB A B A B A B A B

A A B B AB A B A B A B A B

14 23

14 23

14 23

14 23

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
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where











ψ = + =p

(0, 1)

(0, 1)

(0, 1)

(0, 1)

i

(0, 1)

(0, 1)

(0, 1)

(0, 1)

, (0, 1),k j

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

with = −i 12 , and  μ σ( , ) being the Gaussian distribution
with the expectation value μ and the standard deviation σ.
According to [68], this method gives a uniform distribution of
quantum states.
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