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Abstract
In this article we present a review of the Radon transform and the instability of the tomographic
reconstruction process. We show some new mathematical results in tomography obtained by a
variational formulation of the reconstruction problem based on the minimization of a Mumford–
Shah type functional. Finally, we exhibit a physical interpretation of this new technique and
discuss some possible generalizations.
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1. Introduction

The primary goal of tomography is to determine the internal
structure of an object without cutting it, namely using data
obtained by methods that leave the object under investigation
undamaged. These data can be obtained by exploiting the
interaction between the object and various kinds of probes
including x-rays, electrons, and many others. After its inter-
action with the object under investigation, the probe is
detected to produce what we call a projected distribution or
tomogram, see figure 1.

Tomography is a rapidly evolving field for its broad
impact on issues of fundamental nature and for its important
applications such as the development of diagnostic tools
relevant to disparate fields, such as engineering, biomedical
and archaeometry. Moreover, tomography can be a powerful
tool for many reconstruction problems coming from many
areas of research, such as imaging, quantum information and
computation, cryptography, lithography, metrology and many
others, see figure 2.

From the mathematical point of view the reconstruction
problem can be formulated as follows: one wants to recover
an unknown function through the knowledge of an appro-
priate family of integral transforms. It was proved by Radon
[1] that a smooth function f (x, y) on 2 can be determined
explicitly by means of its integrals over the lines in 2.

Let f (X, θ) denote the integral of f along the line
x y Xcos sinθ θ+ = (tomogram). Then

f x y f x y( , ) ( ) ( cos sin , )
d

4
, (1)

0

21
2 ∫Δ θ θ θ θ

π
= − +

π 

where
x y

2

2

2

2Δ = +∂
∂

∂
∂

is the Laplacian on 2, and its square

root is defined by Fourier transform (see theorem 1). We now
observe that the formula above has built in a remarkable
duality: first one integrates over the set of points in a line, then
one integrates over the set of lines passing through a given
point. This formula can be extended to the N-dimensional
case by computing the integrals of the function f on all pos-
sible hyperplanes. This suggests to consider the transform f↦
f defined as follows. If f is a function on N then f is the
function defined on the space of all possible (N − 1)-dimen-
sional planes in N such that, given a hyperplane λ, the value
of f ( )λ is given by the integral of f along λ. The function

f is called Radon transform of f.
There exist several important generalizations of the

Radon transform by John [2], Gel’fand [3], Helgason [4] and
Strichartz [5]. More recent analysis has been boosted by
Margarita and Volodya Man’ko and has focused on sym-
plectic transforms [6], on the deep relationship with classical
systems and classical dynamics [7–9], on the formalism of
star product quantization [10–12], and on the study of mar-
ginals along curves that are not straight lines [13, 14].
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In quantum mechanics the Radon transform of the
Wigner function [15–17] was considered in the tomographic
approach to the study of quantum states [18, 19] and
experimentally realized with different particles and in diverse
situations. For a review on the modern mathematical aspects
of classical and quantum tomography see [20]. Good reviews
on recent tomographic applications can be found in [21] and
in [22], where particular emphasis is given on maximum
likelihood methods, that enable one to extract the maximum
reliable information from the available data.

As explained above, from the mathematical point of
view, the internal structure of the object is described by an
unknown function f (density), that is connected via an
operator to some measured quantity g (tomograms). The
tomographic reconstruction problem can be stated as follows:
for given data g, the task is to find f from the operator
equation f g= . There are many problems related to the
implementation of effective tomographic techniques due to
the instability of the reconstruction process. There are two
principal reasons of this instability. The first one is the ill-
posedness of the reconstruction problem: in order to obtain a

satisfactory estimate of the unknown function it is necessary
an extremely precise knowledge of its tomograms, which is in
general physically unattainable [23]. The second reason is the
discrete and possibly imperfect nature of data that allows to
obtain only an approximation of the unknown function.

The first question is whether a partial information still
determines the function uniquely. A negative answer is given
by a theorem of Smith et al [24], that states: ‘a function f with
compact support in the plane is uniquely determined by any
infinite set, but by no finite set of its tomograms’. Therefore, it
is clear that one has to abandon the request of uniqueness in
the applications of tomography. Thus, due to the ill-posedness
of reconstruction problem and to the loss of uniqueness in the
inversion process, a regularization method has to be intro-
duced to stabilize the inversion.

A powerful approach is the introduction of a Mumford–
Shah (MS) functional, first introduced in a different context
for image denoising and segmentation [25]. The main moti-
vation is that, in many practical applications, one is not only
interested in the reconstruction of the density distribution f,
but also in the extraction of some specific features or patterns
of the image. An example is the problem of the determination
of the boundaries of inner organs. By minimizing the MS
functional, one can find not only (an approximation of) the
function but also its sharp contours. Very recently a MS
functional for applications to tomography has been introduced
in the literature [26–28]. Some preliminary results in this
context are already available but there are also many inter-
esting open problems and promising results in this direction,
as we will try to explain in the second part of this article.

The article is organized as follows. Section 2 contains a
short introduction to the Radon transform, its dual map and
the inversion formula. Section 3 is devoted to a brief dis-
cussion on the ill-posedness of the tomographic reconstruc-
tion and to the introduction of regularization methods. In
section 4 a MS functional is applied to tomography as a
regularization method. In particular, in subsection 4.1 the
piecewise constant model and known results are discussed
together with a short list of some interesting open problems.
Finally, in section 5 we present an electrostatic interpretation
of the regularization method based on the MS functional,
which motivates us to introduce an improved regularization
method, based on the Blake–Zisserman functional [29], as a
relaxed version of the previous one.

2. The Radon transform: definition and inversion
formula

Consider a body in the plane 2, and consider a beam of
particles (neutrons, electrons, x-rays, etc) emitted by a source.
Assume that the initial intensity of the beam is I0. When the
particles pass through the body they are absorbed or scattered
and the intensity of the beam traversing a length Δs decreases
by an amount proportional to the density of the body μ,

Figure 1. Distribution and two tomograms.

Figure 2. Reconstruction problems from diverse fields may be united
within the framework of tomography.
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namely

I I s s( ), (2)Δ Δ μ= −

so that

I s I r r( ) exp ( )d . (3)
s

0
0

∫ μ= −⎜ ⎟⎛
⎝

⎞
⎠

A detector placed at the exit of the body measures the final
intensity I(s) and then from

I s

I
r rln

( )
( )d (4)

s

0 0
∫ μ− =

one can record the value of the density μ integrated on a line.
If another ray with a different direction is considered, with the
same procedure one obtains the value of the integral of the
density on that line.

The mathematical model of the above setup is the fol-
lowing: given a smooth function f(x) on the plane, x 2∈ ,
and a line λ, consider its tomogram, given by

f f x m x( ) ( )d ( ), (5)∫λ =
λ


where md is the Euclidean measure on the line λ. In this way,
we have defined an operator  that maps a smooth function f
on the plane 2 into a function f on 2, the manifold of the
lines in 2.

We ask the following question: if we know the family of
tomograms f( ( )) 2λ λ∈ , can we reconstruct the density
function f ? The answer is affirmative and in the following we
will see how to obtain this result.

Let us generalize the above definitions to the case of an
N-dimensional space. Let f be a function defined on N ,
integrable on each hyperplane in N and let N be the
manifold of all hyperplanes in N . The Radon transform of f
is defined by equation (5), where md is the Euclidean measure
on the hyperplane λ. Thus we have an operator , the Radon
transform, that maps a function f on N into a function f on

N , namely f f↦  . Its dual transform, also called back
projection operator, g g↦  associates to a function g on N
the function g on N given by

g x g( ) ( )d ( ), (6)
x

∫ λ μ λ=
λ∈


where dμ is the unique probability measure on the compact
set x{ }Nλ λ∈ ∣ ∈ which is invariant under the group of
rotations around x.

Let us consider the following covering of N

X, ( , ) , (7)N N1   ξ λ× → ↦−

where N 1 − is the unit sphere in N . Thus, the equation of the
hyperplane λ is

{ }x X x· 0 , (8)Nλ ξ= ∈ − =

with a · b denoting the Euclidean inner product of a b, N∈ .
See figure 3. Observe that the pairs X( , ),ξ

X( , ) N 1 ξ− − ∈ × − are mapped into the same hyperplane
Nλ ∈ . Therefore (7) is a double covering of N . Thus

N has a canonical manifold structure with respect to which
this covering mapping is differentiable. We identify con-
tinuous (differentiable) functions g on N with continuous
(differentiable) functions g on N 1 × − satisfying
g(X, ξ) = g(−X, −ξ).

We will momentarily work in the Schwartz space ( )N
of complex-valued rapidly decreasing functions on N . In
analogy with ( )N we define ( )N 1 × − as the space of
C∞ functions g on N 1 × − which for any integers m ⩾ 0,
any multiindex Nα ∈ , and any differential operator D on

N 1 − satisfy

X
Dg

X
Xsup

( )
( , ) . (9)

X

m

, N 1 

ξ∂
∂

< +∞
ξ

α

α
∈ ∈ −

The space ( )N is then defined as the set of
g ( )N 1 ∈ × − satisfying g(−X, −ξ) = g(X, ξ).

Now we want to obtain an inversion formula, namely we
want to prove that one can recover a function f on N from
the knowledge of its Radon transform. In order to get this
result we need a preliminary lemma, whose proof can be
found in [20], which suggests an interesting physical
interpretation.

Lemma 1. Let f ( )N∈  andV x x x( ) 1 , N= ∣ ∣ ∈ , x 0≠ .
Then

f x a f V( )( ) , (10)N= ∗ 

where aN is a constant that depends only on the dimension N,
and ∗ denotes the convolution product,

f g x f y g x y y( )( ) ( ) ( )d . (11)
N

∫∗ = −

Figure 3. Parametrization of the hyperplane λ using its signed
distance X from the origin and a unit vector ξ perpendicular to λ.
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A physical interpretation of lemma 1 is the following: if f
is a charge distribution, then the potential at the point x
generated by that charge is exactly f x( ( ))  , see figure 4.
Notice, however, that the potential of a point charge scales
always as the inverse distance independently of the dimension
N, and thus it is Coulomb only for N = 3. The only depen-
dence on N is in the strength of the elementary charge aN.
This fact is crucial: indeed, the associated Poisson equation
involves an N-dependent (fractional) power of the Laplacian,
which appears in the inversion formula for the Radon
transform.

Theorem 1. Let f ( )N∈  . Then

f x f x( )
1

2(2 )
( ) ( )( ), (12)

N 1

N 1
2

π
Δ= −

−
−  

where ( )Δ− α, with α > 0, is a pseudodifferential operator
whose action is

( )f x k f k
k

( ) ( ) ˆ ( )e
d

(2 )
, (13)k x

N
2 i ·

N
∫Δ

π
− =α α

where f̂ is the Fourier transform of f,

f k f x xˆ ( ) ( )e d . (14)k xi ·
N

∫= −

The proof of theorem 1 can be found in [20]. Equation (12)
says that, modulo the final action of ( )

N 1
2Δ− −
, the function f

can be recovered from its Radon transform f by the
application of the dual mapping : first one integrates over the
set of points in a hyperplane and then one integrates over the
set of hyperplanes passing through a given point. Explicitly
we get

f x f x( )
1

2(2 )
( ) ( · , )d , (15)

N 1

N

N

1
2

1
∫

π
Δ ξ ξ ξ= −

−
−

−


which has the following remarkable interpretation. Note that
if one fixes a direction N 1ξ ∈ − , then the function

f x( · , )ξ ξ is constant on each plane perpendicular to ξ,
i.e. it is a (generalized) plane wave. Therefore, equation (15)
gives a representation of f in terms of a continuous
superposition of plane waves. A well-known analogous
decomposition is given by Fourier transform. When N = 2,

one recovers the inversion formula (1) originally found by
Radon [1].

3. Instability of the inversion formula with noisy data

We have defined the Radon transform of any function
f ( )N∈  as f . The following theorem [4] contains the
characterization of the range of the Radon linear operator 
and the extension of  to the space of square integrable
functions L ( )N2  .

Theorem 2. The Radon transform  is a linear one-to-one
mapping of ( )N onto ( )H

N , where the space ( )H
N is

defined as follows: g ( )H
N∈  if and only if g ( )N∈  and

for any integer k ∈ the integral

g X X X( , ) d (16)k


∫ ξ

is a homogeneous polynomial of degree k in ,..., N1ξ ξ .
Moreover, the Radon operator  can be extended to a
continuous operator from L ( )N2  to L ( )N2  .

In medical imaging, computerized tomography is a
widely used technique for the determination of the density f of
a sample from measurements of the attenuation of x-ray
beams sent through the material along different angles and
offsets. The measured data g are connected to the density f via
the Radon transform . To compute the density distribution f
the equation g f=  has to be solved. Unfortunately it is a
well known fact that  is not continuously invertible on
L ( )N2  [4], and this implies that the problem of inversion is
ill-posed. For this reason, regularization methods have to be
introduced to stabilize the inversion in the presence of data
noise.

We discuss ill-posed problems only in the framework of
linear problems in Hilbert spaces [30]. Let ,ℋ K be Hilbert
spaces and let A be a linear bounded operator fromℋ intoK.
The problem

g A f ggiven , find f such that (17)∈ ∈ ℋ =K

is called well-posed if it is uniquely solvable for each g ∈ K
and if the solution depends continuously on g. Otherwise
(17), is called ill-posed. This means that for an ill-posed
problem the operator A 1− either does not exist, or is not
defined on all of K, or is not continuous. The practical dif-
ficulty with an ill-posed problem is that even if it is solvable,
the solution of Af = g need not be close to the solution of
Af g= ϵ if gϵ is close to g.

In general A 1− is not a continuous operator. To restore
continuity we introduce the notion of a regularization of A 1− .
This is a family T( ) 0γ γ> of linear continuous operators
T : → ℋγ K which are defined on all K and for which

T g A glim (18)
0

1=
γ

γ
→

−

on the domain of A 1− . Obviously T∥ ∥ → +∞γ as 0γ → if A 1−

Figure 4. f x( )( )  is the potential at x generated by the charge
distribution f.
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is not bounded. With the help of a regularization we can solve
(17) approximately in the following sense. Let g ∈ϵ K be an
approximation of g such that g g ϵ∥ − ∥ ⩽ϵ . Let ( )γ ϵ be such
that, as 0ϵ → ,

T( ) 0, 0. (19)( )γ ϵ ϵ→ ∥ ∥ →γ ϵ

Then, as 0ϵ → ,

( )
( )

( )T g A g T g g T A g

T T A g 0. (20)

( )
1

( ) ( )
1

( ) ( )
1ϵ

∥ − ∥ ⩽ ∥ − ∥ + ∥ − ∥

⩽ ∥ ∥ + ∥ − ∥ →

γ ϵ
ϵ

γ ϵ
ϵ

γ ϵ

γ ϵ γ ϵ

− −

−

Hence, T g( )γ ϵ
ϵ is close to A g1− if gϵ is close to g. The number γ

is called a regularization parameter. Determining a good
regularization parameter is one of the crucial points in the
application of regularization methods.

There are several methods for constructing a regulariza-
tion as the truncated singular value decomposition, the
method of Tikhonov–Phillips or some iterative methods [30].
In the following section we present a regularization method
based on the minimization of a MS type functional.

4. MS functional for the simultaneous segmentation
and reconstruction of a function

In many practical applications one is not only interested in the
reconstruction of the density distribution f but also in the
extraction of some specific features within the image which
represents the density distribution of the sample. For example,
a surgical planning might require the determination of the
boundaries of inner organs like liver or lung or the separation
of cancerous and healthy tissues. Segmenting a digital image
means finding its homogeneous regions and its edges, or
boundaries. Of course, the homogeneous regions are sup-
posed to correspond to meaningful parts of objects in the real
world, and the edges to their apparent contours. The MS
variational model is one of the principal models of image
segmentation. It defines the segmentation problem as a joint
smoothing/edge detection problem: given an image g(x), one
seeks simultaneously a ‘piecewise smoothed image’ u(x) with
a set Γ of abrupt discontinuities, the ‘edges’ of g. The original
MS functional [25], is the following:

u u g u x x

D

MS( , ) ( ) d

( ), (21)

L D D

N

( )
2 2

1

2 ∫
∩

Γ α

β Γ

= ∥ − ∥ +

+

Γ⧹

−




where

• D N⊂ is an open set (screen);
• NΓ ⊂ is a closed set (set of edges);
• u D: → (cartoon);
• u denotes the distributional gradient of u;
• g L D( )2∈ is the datum (grey intensity levels of the
image);

• , 0α β > are parameters (tuning parameters);
• N 1− denotes the N( 1)− -dimensional Hausdorff
measure.

The squared L2-distance in (21) plays the role of a fidelity term: it
imposes that the cartoon u approximate the image g. The second
term in the functional imposes that the cartoon u be piecewise
smooth outside the edge set Γ. In other words this term favors
sharp contours rather than zones where a thin layer of gray is
used to pass smoothly from white to black or vice versa. Finally
the third term in the functional imposes that the contour Γ be
‘small’ and as smooth as possible. What is expected from the
minimization of this functional is a sketchy, cartoon-like version
of the given image together with its contours. See figure 5.

The minimization of the MS functional represents a
compromise between accuracy and segmentation. The com-
promise depends on the tuning parameters α and β which have
different roles. The parameter α determines how much the
cartoon u can vary, if α is small some variations of u are
allowed, while as α increases u tends to be a piecewise constant
function. The parameter β represents a scale parameter of the
functional and measures the amount of contours: if β is small, a
lot of edges are allowed and we get a fine segmentation. As β
increases, the segmentation gets coarser. For more details on
the model see the original paper [25], and the book [31].

The minimization of the MS functional in (21) is per-
formed among the admissible pairs u( , )Γ such that Γ is closed
and u C D( )1 Γ∈ ⧹ . It is worth noticing that in this model there
are two unknowns: a scalar function u and the set Γ of its
discontinuities. For this reason this category of problems is
often called ‘free-discontinuity problem’. Existence of mini-
mizers of the MS functional in (21) was proven by De Giorgi
et al in [33] in the framework of bounded variation functions
without Cantor part (space SBV) introduced by Ambrosio and
De Giorgi in [34]. Further regularity properties for optimal
segmentation in the MS model were shown in [35–38].

Here we present a variation of the MS functional, adapted
to the inversion problem of the Radon transform. More precisely,
we consider a regularization method that quantifies the edge
sets together with images, i.e. a procedure that gives simulta-
neously a reconstruction and a segmentation of f (assumed to be
supported in D N⊂ ) directly from the measured tomograms g,
based on the minimization of the MS type functional

J f f g

f x x

( , )

( ) d ( ). (22)

L

D

N

MS ( )
2

2 1

N2 

∫
Γ

α β Γ

= ∥ − ∥

+ +
Γ⧹

−




The only difference between the functionals MS and JMS is the
first term, i.e. the fidelity term, that ensures that the reconstruc-
tion for f is close enough to a solution of the equation f g= ,

Figure 5. Left: image of an eye (g). Center: contours of the image in
the Mumford–Shah model (edges Γ). Right: piecewise smooth
function approximating the image (cartoon u) [32].
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whereas the other terms play exactly the same role explained for
the functional MS. As explained above, in addition to the
reconstruction of the density f, we are interested in the recon-
struction of its singularity set Γ, i.e. the set of points where the
solution f is discontinuous. The main difference with respect to
the standard MS functional (21) is that we have to translate the
information about the set of sharp discontinuities of g (and hence
on the space of the Radon transform) into information about the
strong discontinuities of f.

4.1. The piecewise constant model

Here we will review the results obtained by Ramlau and Ring
[26] concerning the minimization of (22) restricted to piece-
wise constant functions f, and then consider some interesting
open problems. For medical applications, it is often a good
approximation to restrict the reconstruction to densities f that
are constant with respect to a partition of the body, as the
tissues of inner organs, bones, or muscles have approximately
constant density.

We introduce the space PCm(D) as the space of piecewise
constant functions that attain at most m different values,
where D is an open and bounded subset of N . In other
words, each f PC D( )m∈ is a linear combination of m char-
acteristic functions

k
χΩ of sets ( )k k m1 ,...,Ω = which satisfy

a.e. .
k

m

D
1

k∑χ χ=Ω
=

We assume that the kΩ ʼs are relatively open in D and we set
k kΓ Ω= ∂ for the boundary of kΩ with respect to the relative
topology of the open domain D. In this situation the edge set
will be given by the union of the boundaries of kΩ ʼs. For
technical reasons it is necessary to assume a nondegeneracy
condition on the admissible partitions of D:

( ) ( )is admissible if , (23)k k m
N

k1 ,...,
Ω Ω Ω δ= ⩾= 

for some 0δ > , for all k m1 ,...,= , where N denotes the
Lebesgue measure on N .

It turns out to be convenient to split the information
encoded in a typical function,

f f PC D( ), (24)
k

m

k m

1
k∑ χ= ∈Ω

=

into a ‘geometrical’ part described by the m-tuple of pairwise
disjoint sets ( )k k m1 ,...,Ω Ω= = which cover D up to a set of
measure zero and a ‘functional’ part given by the m-tuple of
values f f( )k k m1 ,...,= = . We also use the notation

( )k k m1 ,...,Γ Γ= = , for the boundaries k kΓ Ω= ∂ of kΩ .
As usual when dealing with inverse problems, we have to

assume that the data g are not exactly known, but that we are
only given noisy measured tomograms gϵ of a (hypothetical)
exact data set g with g g L ( )N2  ϵ∥ − ∥ ⩽ϵ .

If we restrict the functional (22) to functions in PCm(D)
we obtain that the second term (involving the derivatives of f)

disappears, therefore it remains to minimize the functional

( )fJ f g( , ) , (25)L
k

m
N

k( )
2

1

1
N2  ∑Ω β Γ= ∥ − ∥ +β

ϵ

=

− 

over PCm(D), with respect to the functional variable f (a
vector of m components) and the geometric variable Ω (a
partition of the domain D with at most m distinct regions
satisfying the non degeneracy condition (23)). So the problem
is to find f PC D˜ ( )m∈ such that

f f PC D˜ ˜ ( ), (26)
k

m

k m

1

˜ k∑ χ= ∈Ω
=

where

( )f fJ˜ , ˜ arg min ( , ). (27)
f( , )

Ω Ω=
Ω

β

It is clear that f̃ will depend on the regularization parameter β
and on the error level ϵ.

Now we can state the results concerning the functional Jβ
in (25). There are several technical details necessary for the
precise statement and proof of the theorems, for which we
refer to the original paper [26]. Here we will give a simplified
version of the theorems with the purpose of explaining the
main goal, without too many technical details. The first result
is about the existence of minimizers of the functional Jβ
in (25).

Theorem 3. For all g L ( )N2 ∈ϵ there exists a minimizer
f( ˜ , ˜ )Ωβ

ϵ
β
ϵ

of the functional Jβ in (25), with 0β > .
The second result regards the stable dependence of the

minimizers of the functional Jβ in (25) on the error level ϵ.

Theorem 4. Let g( )n
n


ϵ

∈ be a sequence of functions in L ( )N2 

and let g L ( )N2 ∈ϵ . For all n ∈ , let f( ˜ , ˜ )n nΩβ
ϵ

β
ϵ

denote the

minimizers of the functional Jβ with initial data g nϵ . If

g gn →ϵ ϵ in L ( )N2  , as n → +∞, then there exists a
subsequence of f( ˜ , ˜ )n nΩβ

ϵ
β
ϵ

such that

( ) ( )f f˜ , ˜ ˜ , ˜n j n jΩ Ω→β
ϵ

β
ϵ

β
ϵ

β
ϵ

as j → +∞, and f( ˜ , ˜ )Ωβ
ϵ

β
ϵ

is a minimizer of Jβ with initial

data gϵ. Moreover, the limit of each convergent subsequence
of f( ˜ , ˜ )n nΩβ

ϵ
β
ϵ

is a minimizer of Jβ with initial data gϵ.

Finally the last theorem is a regularization result.

Theorem 5. Let f PC D* ( )m∈ be given,

f f* ,*
k

m

k
1

*
k

∑ χ= Ω
=

and let g f* *=  . Assume we have noisy data g L ( )N2 ∈ϵ

with g g* L ( )N2  ϵ∥ − ∥ ⩽ϵ . Let us choose the parameter
( )β β ϵ= satisfying the conditions ( ) 0β ϵ → and
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( ) 02ϵ β ϵ → as 0ϵ → . For any sequence 0nϵ → , let
f( ˜ , ˜ )n nΩ denote the minimizers of the functional J ( )nβ ϵ with

initial data g nϵ and regularization parameter ( )nβ β ϵ= .Then
there exists a convergent subsequence of f( ˜ , ˜ )n nΩ . Moreover,
for every convergent subsequence with limit f( ˜ , ˜ )Ω the
function

f f PC D˜ ˜ ( )
k

m

k m

1

˜ k∑ χ= ∈Ω
=

is a solution of the equation f g*= with a minimal
perimeter. Moreover if f* is the unique solution of this
equation then the whole sequence converges

f f in L D˜ * , ( ),n 2→

when n → +∞.

Finally, let us list some open problems in this context:

• Is the nondegeneracy condition (23) necessary?
• Can one find an a priori optimal value for the number m
of different values?

• Is it possible to give an a priori estimate on the L∞-norm
of the solution (maximum principle)?

• And finally, it would be very important for applications
to prove the existence of minimizers of the functional JMS

not restricted to piecewise constant functions f.

We observe that all these problems are quite natural, and
have been completely solved in the case of the standard MS
functional MS in (21), see e.g. [31, 39].

5. Electrostatic interpretation of JMS

In this section we restrict our attention to the 3-dimensional
case. We propose an electrostatic interpretation of the reg-
ularization method based on the functional JMS discussed in
the previous section. The intent is to give a physical inter-
pretation of the fidelity term f g

L ( )
2

2 3
∥ − ∥ in the functional

(22), that provide the intuition for an improved regularization
method. For N = 3, the inversion formula (12) and the elec-
trostatic identity (10) particularize, respectively, as follows:
for all f ( )3∈  one gets

f f
1

2(2 )
( ) (28)

2π
Δ= −  

and

f a f V( ) , (29)3= ∗ 
where V x x( ) 1= ∣ ∣ and a3 is a constant. We present two
preliminary Lemmas.

Lemma 2. For all real valued f ( )3∈  one has

f f
1

2(2 )
( ) . (30)2

2
2

π
∥ ∥ = ∥ ∥  

Proof. We know that f f( )1

2(2 )2 Δ= −
π

  , therefore

f X X

f x f x x

f x f x x

f x x

( , ) d d

( ) ( )( )d

1

2(2 )
[ ( )]( ) ( )( )d

1

2(2 )
( )( ) d .

2

2

2
2

2

3

3

3

 







∫
∫
∫

∫

ξ ξ

π
Δ

π

=

= −

= ∣

×




 

   

 

□

Lemma 3. For all real valued f ( )3∈  define

E f
1

2(2 )
( ) (31)

2π
= −  

and

f
1

2(2 )
( ). (32)

2
φ

π
=  

Then

f E· . (33)Δφ= = −

Proof.

E f

f f

·
1

2(2 )
· ( )

1

2(2 )
( ) ( ) ,

2

2

π
Δφ

π
Δ

= − = −

= − =

   

 

where we used the inversion formula (28). □
Now we consider a measured tomogram g : 3 → and

let us assume that g f0=  for some f :0
3 → . By

lemmas 2–3 it follows immediately that the fidelity term
f g

L ( )
2

2 3
∥ − ∥ can be rewritten as follows:

f g E E2(2 )

2(2 ) , (34)

L g L

g L

( )
2 2

( )
2

2
( )

2

2 3 2 3

2 3

 



π

π φ φ

∥ − ∥ = ∥ − ∥

= ∥ − ∥ 



where

E f E g
1

2(2 )
( ),

1

2(2 )
( ) (35)g2 2π π

= − = −   

are the corresponding electric fields, while

f g
1

2(2 )
( ),

1

2(2 )
( ) (36)g2 2

φ
π

φ
π

= =  

are the corresponding potentials.
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With respect to the standard MS functional in (21), the
new fidelity term in the functional JMS in (22) controls the
distance between the Radon transform of f and the tomo-
graphic data g. The relevant difference with respect to the
original functional is that the function f and its Radon trans-
form f are defined in different spaces. Let us try to interpret
the fidelity term f g

L ( )
2

2 3
∥ − ∥ from a physical point of

view. A key ingredient for this goal is the electrostatics for-
mulation of the Radon transform. This formulation can be
summarized as follows: if we consider, in dimension 3, a
function f, we can think at it as a charge distribution density;
if we apply to f first the Radon operator  and then its adjoint
 we obtain, up to a constant, the electrostatic potential
generated by the charge distribution f. This formulation can
be stated in any dimension N: the difference with general
potential theory in dimension N is that, in tomography, the
potential produced by a point charge always scales like x1 ∣ ∣,
which is the case of electrostatic potential only in dimension
3. From the electrostatic formulation of the Radon transform
we can prove that the fidelity term in the functional JMS

actually imposes that the electric field produced by the charge
distribution f must be close to the ‘measured electric field’.
Therefore we conclude that the term f g

L ( )
2

2 3
∥ − ∥ is a

fidelity term in this weaker sense.
Using this property based on the electrostatic inter-

pretation of the tomographic reconstruction, we can try to
minimize some appropriate functionals in the new variables E
(electric field) or φ (electric potential) and then compute the
corresponding f (charge density). We manipulate the func-
tional JMS as follows:

J f( , )MS Γ

f g f x x

E E E x x

E E E x

( ) d ( )

2(2 ) ( · )( ) d

( )

2(2 ) d ( )

L

g

g

( )
2 2 2

2 2 2

2

2 2 2 2

2 3 3

3

3

 





∫
∫

∫

α β Γ

π α

β Γ

π α Δ β Γ

= ∥ − ∥ + +

= ∥ − ∥ +

+

= ∥ − ∥ + +

Γ

Γ

Γ

⧹

⧹

⧹



 

 




F E( , ), (37)Γ=

where F is a new functional depending on a vector function E
and on a set Γ, and we used the fact that E 0∧ = , since E
is conservative.

We observe that the functional

F E E E E x( , ) 2(2 ) d

( ) (38)

g
2 2 2

2

3
∫Γ π α Δ

β Γ

= ∥ − ∥ +

+

Γ⧹


is a second order functional for a vector field E in which the
set Γ is the set of discontinuities of f and thus is the set of
discontinuities of E· . In the functional F we recognize
some similarities with a famous second-order free-dis-
continuity problem: the Blake–Zisserman model. This model
is based on the minimization of the Blake–Zisserman

functional

( )( )

( )

( )

v v v

v x x

D

D

BZ , ,

( ) d

, (39)

( )

L D

D

N

N

0 1 0 ( )
2

2

1
0

1
1 0

2

0 1
∫

∩
∩

Γ Γ

α Δ

β Γ

γ Γ Γ

= ∥ − ∥

+

+

+ ⧹

∪Γ Γ⧹

−

−




among admissible triples v( , , )0 1Γ Γ , where

• D N⊂ is an open set;
• , N

0 1 Γ Γ ⊂ are closed sets;
• 0Γ is the set of discontinuities of v (jump set), and 1Γ the
set of discontinuities of v (crease set);

• v D: → , v C D C D( ( )) ( )2
0 1 0∪ ∩Γ Γ Γ∈ ⧹ ⧹ is a scalar

function;
• vΔ denotes the distributional Laplacian of v;
• v L D( )0

2∈ is the datum (grey intensity levels of the
given image);

• , , 0α β γ > are parameters;
• N 1− denotes the N( 1)− -dimensional Hausdorff
measure.

The Blake–Zisserman functional allows a more precise
segmentation than the MS functional in the sense that also
the curvature of the edges of the original picture is
approximated. On the other hand, minimizers may not always
exist, depending on the values of the parameters ,β γ and on
the summability assumption on v0. We refer to [29, 40–44]
for motivation and analysis of variational approach to image
segmentation and digital image processing. In particular see
[40, 41, 45] for existence of minimizer results and [42] for a
counterexample to existence and [46, 47] for results
concerning the regularity of minimizers.

Equation (37) implies that the functional JMS can be
rewritten in terms of the vector field E and of the dis-
continuities set of E· , i.e. the set of creases of E, using the
terminology of the Blake–Zisserman model. The fact that in
the functional F the discontinuities set of E is not present
depends on the fact that we are assuming that the charge
density f in the functional JMS do not concentrate on surfaces
or on lines. If we admit concentrated charge layers we can
consider the Blake–Zisserman model for the vector function E
as a relaxed version of the MS model for the charge f. In other
words we propose to investigate the connections between
minimizers of JMS and minimizers of the higher order func-
tional JBZ:

( )

( )

( )

J E E E

E x x

, ,

( ) d

, (40)

( )

g LBZ 0 1 ( )
2

2

2
0

2
1 0

2 3

3
0 1




∫

Γ Γ

α Δ

β Γ

γ Γ Γ

= ∥ − ∥

+

+

+ ⧹

∪Γ Γ⧹




with the additional constraint E 0∧ = . The main advan-
tage of this approach is that the functional JBZ is a purely
differential functional, while the functional JMS is an integro-
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differential one. We expect that some results about the Blake–
Zisserman model that could be rephrased into tomographic
terms would provide immediately new results in tomography.
Conversely all the peculiar tomographic features, as the
intrinsic vector nature of the variable E, the fact that its
support cannot be bounded and the extra constraint

E 0∧ = , motivate new research directions in the study of
free-discontinuity problem. For example, an interesting result
in this context would be the determination of a good
hypothesis on the datum Eg that ensure that the charge density
f do not concentrate.

We conclude this section with some comments:

• we proved that the measured data g are actually the
measured electric field produced by the unknown charge
density, so the term f g

L ( )
2

2 3
∥ − ∥ in the functional is a

fidelity term in a weak sense.
• The problem of the reconstruction of the charge can be
rephrased into a reconstruction problem for the electric
field. The electric field is an irrotational vector field, so
the new minimization problem is actually a constrained
minimization. In order to avoid this constraint one could
reformulate the reconstruction problem in terms of the
electric potential φ (E φ= − ) obtaining a third-order
functional in which the fidelity term is

, (41)g L ( )
2

2 3
φ φ∥ − ∥ 

where the potentials are given by (36).
• All these considerations hold true in dimension 3. In a
generic dimension n 3⩾ the situation is quite different
because the inversion formula for the Radon transform
involves a (possibly fractional) power of the Laplacian.
In this case the electrostatic description of tomography
given in this section fails. In order to restore it, it is
necessary to consider another Radon-type transform
which involves integrals of f over linear manifolds with
codimension d such that n d( ) 2 1− = , i.e. d n 2= − ,
see e.g. [4, 20].
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