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Abstract
We show a sample of some relevant developments in classical and quantum tomography that
have taken place over the last twenty years. We will present a general conceptual framework that
provides a simple unifying mathematical picture for them and, as an effective use of it, three
subjects have been chosen that offer a wide panorama of the scope of classical and quantum
tomography: tomography along lines and submanifolds, coherent state tomography and
tomography in the abstract algebraic setting of quantum systems.

Keywords: quantum Tomography, Radon transform, coherent states, C*-algebras

1. Introduction

Almost twenty years ago O V Man’ko and V I Man’ko wrote
their first contributions to the foundations of quantum tomo-
graphy ([Ar96, Mn96, Ma97]). We would like to join this
celebration and highlight some of the beautiful mathematical
structures in classical and quantum tomography uncovered
since then. In order to do that we will first present a general
conceptual framework that provides a simple unifying math-
ematical picture for all of them and three instances that
illustrate well both the widespread scope of its applications
and its conceptual unifying strength.

1.1. The scope of tomography

Tomography plays a very important role in modern science
because it allows us to determine the structural properties of
an object using noninvasive methods, i.e. leaving the object
under scrutiny in an undamaged state. Therefore, the techni-
que may be applied in medicine, astrophysics, geophysics,
material science, physics and nanophysics.

In each field of application, tomography acquires a dif-
ferent form, using different procedures and techniques so that
the unifying ideology behind it is sometimes obscured and not
immediately available.

In this paper we would like to show its abstract mathe-
matical aspects and framework. Due to the large and wide
applicability of tomography, contributors and researchers are
disseminated in a large variety of fields and it is therefore not
always possible to attribute with certainty an idea to a well
identified scientist. However, it is possible to recognize one
pioneer in the field, Johannes Radon, and his paper of
1917 [Ra17].

In mathematical terms, the problem formulated by Radon
was the following: by integrating a function f, say of two
variables x and y, that satisfies some regularity conditions,
along all possible straight lines of a plane, one obtains a
function depending on the lines, let us say F(l), where l
denotes a line. The problem that Radon solved was to
reconstruct the initial function f out of F.

Of course a few questions related to the previous state-
ments are immediate: is every function of lines, satisfying
suitable regularity conditions, obtainable by this process? In
the affirmative, is the function f uniquely determined by F and
what is the procedure to find it?

Some generalisations of the procedure occur immedi-
ately, going from the plane to generic manifolds, replacing
lines with more general submanifolds. As straight lines may
be thought of as solutions of the second order equations of
motion for a free particle, replace the free particle motion with
a more general one. When lines are replaced by submanifolds,
describe the family of appropriate submanifolds as solutions
of suitable differential equations. If the plane is identified with
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a phase space of a particle with one degree of freedom, is it
possible to extend the procedure to general phase spaces and
interpret the original function f as a distribution probability
function for a statistical mechanical system? These questions
will be explored in section 2.

By thinking of the plane as an Abelian vector group, one
can introduce the Wigner–Weyl formulation of quantum
mechanics and consider the plane (phase space) as the carrier
space of a quantum mechanical picture in terms of a ‘quan-
tizer-dequantizer’ description. In this manner the original
treatment of the problem devised by Radon is carried over to
the quantum situation by considering a composition of the
Radon procedure with the Wigner–Weyl map. The presence
of Weyl’s map allows us to also introduce coherent states and
therefore extend the various applications to quantum optics.

When the original function f is thought of as a Wigner
function, then the function on lines F becomes a probability
distribution. Thus the probabilistic aspects of quantum
mechanics enter naturally in the ‘tomographic picture’,
therefore many of the questions naturally associated with
probabilities also enter this description, most notably entro-
pies and thermodynamical concepts. See, for instance,
[Ib09, Ib10] for a discussion of these aspects and many oth-
ers, as well as a proof of the completeness of the tomographic
picture of quantum mechanics.

This approach to the tomographic description of quantum
mechanical systems will be discussed in section 3 where it
will be shown that the coherent-state tomographic point of
view provides a unifying description that encompasses var-
ious descriptions of states of quantum systems like the
Wigner quasi-distribution function [Wi32], the Husimi–Kano
K -function [Hu40, ka56], and Sudarshan’s ϕ-diagonal
coherent-state representation [Gl63, Su63].

1.2. General considerations of the mathematical background of
tomography

At this stage, and because of the widespread use of tomo-
graphic notions, it is relevant to extract the main structures
behind the many uses of it.

In order to accomplish that we will replace the space of
functions subjected to a tomographic treatment with a (subset
of a) generic vector space V. The integration procedure along
a line may be considered as a linear functional on V, i.e., an
element α in the dual space V*. The family of all ‘lines’
identifies a subset in V*, say  . Now with any vector v V∈ ,
it is possible to associate a function Fv on  by setting,

F v( ) ( ). (1)v α α=

The ‘reconstruction process’ may now be formulated in
the following terms Given a function F ( )α , is it possible to
find a unique vector v V∈ such that F Fv= ? Which func-
tions on  are associated with vectors in V?

When the vector space V itself is realised as a space of
functions on a manifold M, our procedure associates a func-
tion F on  out of a function f on M. Thus the Radon
transform from a vector space V M( )=  uses a subspace of
linear functionals, immersion of  into the dual space of

M( ) , so that with any function M( )φ ∈  , a function
F ( )∈φ   can be constructed.

The reconstruction procedure amounts to inverting the
previous map. It is now clear that M should be a space with a
measure, to be able to define integrals, and the measure
should have regularity properties so that it also induces
measures on submanifolds of M. The chosen family of sub-
manifolds should have a manifold structure so that we iden-
tify  and a measure on it.

All the various ingredients should be judiciously chosen
so that the direct map from M( ) to ( )  should have an
inverse. It may happen, and it does, that both the domain, in

M( ) , and the codomain in ( )  , should be properly
restricted to achieve the invertibility of the constructed maps.

In what follows we are going to carefully explain how
these domains and codomains are chosen in specific instances
of classical and quantum tomography.

As tomography allows us to provide a unified picture of
classical and quantum systems, we shall first indulge in some
general comments concerning the mathematical description of
classical and quantum systems.

1.3. Description of classical and quantum systems and
tomography

A formal description of a physical system requires the iden-
tification of the following entities:

(i) A space of observables ;
(ii) A space of states  ;
(iii) A pairing between states and observables which gives a

real number, the outcome of a measurement of an
observable A of the system in the state ρ.

To take into account specific aspects of the measuring
process, we require that a map : Bo( )μ × →   , where
Bo( ) denotes the space of probability measures on the
Borelian sets of , is given. Then, the probability P ( )A, Δρ that
the outcome of measuring A on the state ρ will lie in the
interval Δ is given by the measure of the interval Δ with
respect to the Borelian measure A( , )μ ρ . If the measure

A( , )μ ρ is absolutely continuous with respect to the standard
Lebesgue measure dx on , then we will get

P x x( ) ( )d ,A A, ,∫Δ μ=ρ
Δ ρ

where x( )A,μ ρ is the density determined by the measure
A( , )μ ρ , i.e., the Radon–Nikodym derivative of A( , )μ ρ with

respect to dx.
As for the evolution of the system, we require that a flow

structure is given on :

t s( , ): ,Φ → 
such that

t t t s s r t r( , ) , ( , ) ( , ) ( , ).Φ Φ Φ Φ= ◦ =

What we have stated are minimal requirements to have a
reasonable description of physical systems.

2

Phys. Scr. 90 (2015) 074031 M Asorey et al



Often additional structures are imposed on observables,
states and evolution, as a consequence of the experiments
performed on them. For instance, the space of observables of
a quantum system can be required to carry the structure of a
Jordan algebra. With the help of its derivation algebra and a
compatibility condition we can construct a Lie–Jordan alge-
bra and from here a C*-algebra.

Where the previous assumptions are made, states are
positive normalized elements in the dual space of  and they
constitute a convex body.

The evolution is required to provide automorphisms of
the algebra . When the flow t s( , )Φ depends only on the
differences t s− , we get a one-parameter group (or semi-
group) of transformations, and from here we derive an infi-
nitesimal generator for the flow that allows us to write the
evolution in terms of a differential equation.

In section 4 the tomographic description of quantum
states in such an abstract algebraic setting will be discussed.
A group representation will be used to obtain the tomographic
representation and its relation with other tomographic pictures
will be analyzed.

2. Tomography along lines and submanifolds

As discussed in the introduction, the Radon transform as
originally formulated solves the following problem: to
reconstruct a function of two variables from its integrals
over arbitrary lines. The original Radon transform [Ra17]
maps functions defined on a two dimensional plane onto
functions defined on a two dimensional cylinder. The key
feature is that the transform is invertible, i.e. the function can
always be fully recovered from its Radon transform. There
exist several important generalizations of the Radon trans-
form [Ge66, He73, He80, He84, Mi65]. More recent ana-
lyses have focused on affine symplectic transforms [Mn95],
on the deep relationship with classical systems and classical
dynamics [Ma97, As07], and on the study of marginals
along curved submanifolds [As08].

The aim of this work is to review the study of gen-
eralizations of the Radon transform to multidimensional
phase spaces and to frameworks based on marginals along
curves or surfaces described by quadratic equations. There
are interesting applications of these generalizations to both
classical and quantum systems. For classical systems the
Radon transform of probability densities in the phase space
of a classical particle can be used to obtain the initial
probability densities.

The generalization for quantum systems can be
achieved by means of the corresponding tomograms of
Wigner functions in the phase space [As12]. Notice that the
major advantage of the tomographic approach to quantum
systems is that it allows a formulation of quantum systems in
terms of pure classical probability distributions in phase
space.

2.1. Radon transform on the plane

In the 2 plane, a line

d q p q pcos sin , ( , ) (2)2θ θ= + ∈ 

is parametrized by the distance of the line to the origin d ∈ +

and its angle θ with a reference line crossing the origin.
Considering the phase ei 1∈θ  , the family of lines acquires a
cylinder manifold structure 1×+  (see figure 1). There is an
alternative group theoretical description of the manifold of
straight lines of , which can be used for higher dimensional
generalizations. The Euclidean group E(2) acts transitively on
the set of lines in the plane, with a stability group given by the
translations  along the line and the reflections with respect to
it, 2 . Therefore the family of lines is given by E(2) ( )2 × 

, which is isomorphic to 1×+  .
It is interesting to observe that depending on which

subgroup we use to quotient E (2), we either obtain the plane
2 or the cylinder 1×+ 

( )OE(2) (2), E(2) . (3)2 1
2= × = ×+    

The Radon transform is a map of L1 functions of 2 into L1

functions on 1×+  given by

f d s f s d

s d

( , ) d ( sin cos ,

cos sin ), (4)

 ∫θ θ θ

θ θ

= +

− +
−∞

+∞

where s is the parameter along the line given by equation (2).
The inversion formula, as given by Radon [Ra17], amounts to
considering first the average value of F on all lines tangent to
the circle of center (q, p) and radius r

f p q f q p r( , )
1

2
d ( cos sin , ) (5)r

0

2 ∫π
θ θ θ θ= + +∼ π

and then using the Hilbert transform

f q p
r

r
f p q( , )

1 d
( , ), (6)r

0
∫π

= − ′∼∞

to reconstruct the original function.
Later on we will provide an alternative expression for the

inverse Radon transform in an affine language that extends
easily to more general situations, see equation (30). Now we
will discuss how the Radon transform can be generalized to
higher dimensional spaces.

Figure 1. Tomography on the plane.
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2.2. Radon transform on the euclidean space Rn

The manifold of straight lines of n crossing the origin is the
real projective space Pn 1− . This manifold can also be
identified with the space of hyperplanes of dimension n 1−
crossing the origin, and with the quotient of the n 1− unit
sphere by the reflection symmetry 2 ,

P . (7)n n1 1
2=− −  

In the n space, any hyperplane of dimension n 1−

d n x x· , (8)n= ∈ 

is parametrized by its distance to the origin d∈+ and a unit
normal vector n n 1∈ − of n, or what is equivalent to a real
number d n x·± = and a ray of the projective Pn 1− . Thus,
the family n( 1)− -hyperplanes of n acquires a manifold
structure

P , (9)

n n n

n

1
2

1 1
2

1

× ≡ × ≡ ×
≡ ×

+ − − −

−

       

 

i.e. the manifold of all n( 1)− -hyperplanes of n which can
be identified with Pn 1× −  . There is another interesting
group theoretical description of this manifold which is useful
for the analysis of Radon transformsThe Euclidean group

nE( ) acts transitively on the set of n( 1)− − hyperplanes with
a stability group given by the Euclidean transformations along
the n( 1)− -hyperplane and the 2 reflections with respect to
it. Therefore, the family of n( 1)− -hyperplanes is given as

( )n nP E( ) E( 1) . (10)n 1
2× = × −−  

It is interesting to observe that, depending on which subgroup
we use to quotient, we either obtain the Euclidean space n or
the space of its n( 1)− -hyperplanes,

( )
n O n

n n

E( ) ( ), P

E( ) E( 1) . (11)

n n 1

2

= ×
= × −

−  



The natural generalization of the Radon transform for
higher dimensional Euclidean spaces n is a map of L1

functions of n into L1 functions on Pn 1× −  given by

f fx x( ) d ( ) (12)
x

 ∫ξ =
ξ∈

where the n( 1)− -dimensional integral is over the points of
x n∈  contained in the n( 1)− -hyperplane

d n( , ) n 1ξ = ∈ ×+ −  .
There is a dual Radon map which maps L1 functions of

Pn 1× −  into L1 functions on n given by

( ) ( )f x f

n

fn x n n

( ) d

2

2
d ( · , ), (13)

x
x x

x

n n
2

1

⎜ ⎟
⎛
⎝

⎞
⎠





∫

∫

μ ξ ξ

Γ

π

=

=

∼
ξ∈

−

where the n( 1)− -dimensional integral is extended to all
n( 1)− -hyperplanes xξ crossing at the point x with the
probability measure induced from the measure of the

projective space Pn 1− obtained by projection of the standard
homogeneous measure of n 1− .

The inverse of the generalized Radon transform can then
be given in terms of the dual Radon map. However, the
explicit formulas originally given by Radon and John
[Jo55, Ra17] are different for the cases of even and odd
Euclidean spaces,

( )

f x
n

r

r
f y n

f x n

( )
(1 2)

(4 ) ( 2)

d
( ), for even

( ), for odd,

(14)
r r

0

n

n

n

1
2

2
2

1
2

⎧
⎨⎪
⎩⎪

∫Δ

Δ

Γ
π Γ

=

×
−∂ ∼

∼

∞

−

−

−

where i
n

i
i

1Δ = −∑ ∂ ∂= and

( )f x f r

n

f r

x n n

n x n n

( ) d ( · , )

2

2
d ( · , ). (15)

r
x

x
x

n n
2

1

⎜ ⎟
⎛
⎝

⎞
⎠





∫

∫

μ ξ

Γ

π

= +

= +

∼
ξ∈

−

Both cases can be described in a unified way in terms of
pseudo-differential operators by the following formula
[Fa10, He73, He80]

( )
( )

f x f x( )
(4 )

( ), (16)
n

1

2

2

n

n

1
2

1
2Δ

Γ

π Γ
= ∼

−

−

or using an equivalent formulation in terms of Riesz
potentials [Lu66]

f x

n

n n
d y f y

x y

( )

1
1

2

2

1

2 2

1
( ). (17)

n
n

n1 2 1n

⎜ ⎟

⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
∫

π

Γ

Γ Γ
=

−

− ∥ − ∥
∼

− −

2.3. Radon transform on k-planes of euclidean space Rn

The manifold of hyperplanes of dimension k of n (k-planes)
crossing the origin is the real Grassmannian manifold
Gr(k, n), which can also be identified with

Gr k n
O n

O n k O k
( , )

( )

( ) ( )
. (18)=

− ×

The family of k-planes of n acquires a manifold structure

Gr k n
n

k O n k
( , )

E( )

E( ) ( )
. (19)n k × =

× −
−

The generalized Radon transform is a map of L1 func-
tions of n into L1 functions on n k ×− Gr(k, n) given by

f fx x( ) d ( ) (20)
x

 ∫ξ =
ξ∈

where the k-dimensional integral is over the points of x n∈ 
contained in the hyperplane line ξ ∈ Gr(k, n).
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There is a dual Radon map which maps L1 functions of
n k ×− Gr(k, n) into L1 functions on n given by

( ) ( )f x f( ) d , (21)
x

x x
x

∫ μ ξ ξ=∼
ξ∈

where the k n k( )− -dimensional integral is extended to all k-
hyperplanes xξ crossing at the point x with the probability
measure induced from the measure of the Grassmannian
manifold Gr(k, n)obtained by projection of the Haar measure
of O(n).

The inverse of the generalized Radon transform can then
be given in terms of the dual Radon map [Fa10, He73, He80]

( )
( )

f x f x( )
(4 )

( ), (22)

n k

n

2

2

k

k

2

2Δ
Γ

π Γ
= ∼

−

or using an equivalent formulation in terms of Riesz
potentials [Lu66]

( ) ( )
( )( )

f x y f y
x y

( )
1

d
1

( )(23)

n k n k

n k
n

n k

2 2

2 2

n k n
2

∫
π

Γ Γ

Γ Γ −
=

− ∥ ∥
∼

− +

++ 

The k-planes are geodesic submanifolds of n. The general-
ization of Radon transforms for complete geodesic manifolds
is possible. Let us analyze the simplest cases of hyperbolic
spaces n .

2.4. Radon transform in hyperbolic spaces Hn

The hyperbolic space n is a negative constant curvature
Riemanian manifold which can be identified with an hyper-
boloid inmersed in an n 1+ Minkowski space-time. This
space is geodesically complete. Let us denote by xΞ ξ the space
of all geodesics which are tangent to a k-plane ξ of the tangent
space at x. For a given k-plane Tx

nξ ⊂  the corresponding
submanifold in xΞ ξ is a totally geodesic manifold. Due to the
special properties of n , the identification of the space xΞ of
all totally geodesic submanifolds of the same type xΞ ξ con-
taining x and the Grassmannian Gr(k, n)is one-to-one. The
group of isometries of n is the Lorentz group O n( , 1) and
the subgroup of isometries which leave invariant a k-dimen-
sional geodesic submanifold xΞ ξ can be identified with
O n k O k( ) ( , 1)− × . The space of totally geodesic sub-
manifolds kΞ can be identified with

O n

O n k O k

( , 1)

( ) ( , 1)
. (24)kΞ =

− ×

The generalized Radon transform can be defined as

( )f fx xd ( ) ( ) (25)
x

 ∫Ξ μ=ξ
Ξ Ξ∈ ξ

ξ

where the k-dimensional integral is over the geodesically
complete submanifold Ξξ of n endowed with the probability
measure defined by the Riemannian metric induced by its
immersion into n .

In the case of hyperbolic spaces n , the dual map

( ) ( )f x f( ) d , (26)x x
x x

k
∫ μ Ξ Ξ=∼

Ξ Ξ
ξ ξ

∈ξ

is defined in terms of the probability measure induced from
the Haar measure of O n( , 1) by means of the identifica-
tion (24).

In hyperbolic spaces n the inverse Radon transform is
obtained by [He80, He84]

y y x y x

f

n k

n
P f x k

n k

n

n

d d k

x( )
2

(4 )
2

( ) ( ) for even

2

(4 )
2

1

2

2
1

2

d sinh ( , ) cosh ( , ) for odd,

(27)

k
k

k

n

2

2

1

n

n

2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

Δ
Γ

π Γ

Γ

π Γ

Γ

π Γ

=

−

=

− −

×

∼

−


where d y x( , ) denotes the geodesic distance between two
points y x, n∈  , and

P

k l n k l k

k

( )

(( 2 )( 2 1) )) 1

1,

(28)

k

l 0

1k
2

⎧
⎨⎪

⎩
⎪⎪

⎡⎣ ⎤⎦
∏

Δ

Δ

Δ

= − − − − + >

=
=

−

[ ]k

2
being the integer part of k

2
.

A similar analysis can be applied to spaces with constant
positive curvature [He80].

2.5. Affine symplectic tomography on the plane

The generalization of the Radon transform to more general
tomographic submanifolds which are not totally geodesic is
possible by changing the perspective of the Radon transform
and considering it as a special case of a Fourier transform
which then allows the use of harmonic analysis.

Let us define the Radon transform in the affine language
(we called it a tomographic map) [Ge66, Ra17]

f q p

q p f q p q p

( , , ) ( )

d d ( , ) ( ), (29)
2



∫
λ μ ν δ λ μ ν

δ λ μ ν

= − −

= − −


where δ is the Dirac function and the parameters , ,λ μ ν ∈ .
The main advantage of this affine approach is that the

inverse transform acquires a simple form [Ge66]

f q p f( , )
d d d

(2 )
( , , )e . (30)q p

2
i( )

3
∫ λ μ ν

π
λ μ ν= λ μ ν− −



We remark the affine tomographic map is homogeneous

f s s s
s

f( , , )
1

( , , ). (31) λ μ ν λ μ ν=
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2.6. Tomography by hyperplanes

The above construction can be generalized for higher
dimensional spaces in a straightforward way. Let us consider
a function f x( ) on the n-dimensional space x n∈  . It is
possible to reconstruct the function f from its integrals over
arbitrary n( 1)− -dimensional hyperplanes.

A generic hyperplane is given by the equation

x· 0, (32)μλ − =

with λ ∈  and nμ ∈  .
We recall that we have seen in section 2.3 that the space

of (n−1)-hyperplanes is diffeomorphic to Pn 1× −  , which
is the set of pairs ( , [ ])μλ , where λ ∈  is an arbitrary real
number and [ ]μ denotes the projective ray of the vector

nμ ∈  .
The Radon transform is given by

f

f

x

x x x

( , ) ( · )

d ( ) ( · ), (33)n
n



∫
μ μ

μ

λ δ λ

δ λ

= −

= −


where δ is the Dirac function and the parameters λ ∈  and
nμ ∈  . When n = 2 equation (29) is recovered.

It is very easy to show that the inverse transform of
equation (33) reads

f
d

fx( )
d

(2 )
( , )e . (34)

n

n
xi( · )

n 1
∫ μ μλ

π
λ= μλ−

+

In quantum mechanics this version of affine symplectic
Radon transform can be applied to Wigner functions pro-
viding a center of mass tomography [Ar05]. Moreover, in
[Am09] the classical limit for this tomogram was calculated
under some additional conditions.

2.7. Tomography with more general submanifolds

A simple mechanism which allows nonlinear generalizations
of Radon transforms is the combination of the standard affine
transform with a diffeomorphism of the underlying n space.
Let us consider a function f x( ) on the n-dimensional space
x n∈  . The problem one needs to solve is to reconstruct f
from its integrals over an n-parameter family of codimension
one submanifolds.

We can construct such a family by diffeomorphic
deformations of the hyperplanes of n

x· 0, (35)μλ − =

with λ ∈  and nμ ∈  . Let us consider a diffeomorphism φ
of n

q x q( ) . (36)n nφ∈ ↦ = ∈ 

The hyperplanes (35) are deformed by means of φ into a
family of submanifolds in the q space (see figure 2)

q· ( ) 0. (37)μ φλ − =

The Radon transform can be rewritten as

f

f

f J

q

x x x

q q q q

( , ) ( · ( ))

d ( ) ( · )

d ( ( )) ( · ( )) ( ), (38)

n

n

n

n



∫
∫

μ μ φ

μ

φ μ φ

λ δ λ

δ λ

δ λ

= −

= −

= −





where

J
x

q q
q

q
( )

( )
(39)i

j

i

j

φ
=

∂
∂

=
∂

∂

is the Jacobian of the transformation and f (x) is an arbitrary
function.

Now, since

f d f J dx x q q q( ) ( ( )) ( ) , (40)n nφ=

the Radon transform can be rewritten as

f

f

q

q q q

( , ) ( · ( ))

d ( ) ( · ( )), (41)n
n



∫
μ μ φ

μ φ

λ δ λ

δ λ

= −

= −


with λ ∈  and nμ ∈  .
The inverse transform is given by

f f Jq q( )
d d

(2 )
( , ) ( )e , (42)

n

n
qi( · ( ))

n 1
∫ μ μλ

π
λ= μ φλ−

+

with a modified kernel

K J
q

q q
q

( ; , ) ( )e
( )

e . (43)i

j

q qi( · ( )) i( · ( ))μλ
φ

= =
∂

∂
μ φ μ φλ λ− −

We can now consider different applications of this
deformed generalization of the Radon transform.

2.8. Tomography by circles in the plane

The conformal inversion

x y q p
q

q p

p

q p
( , ) ( , ) , , (44)

2 2 2 2

⎛
⎝⎜

⎞
⎠⎟φ= =

+ +

maps the family of lines

x y 0 (45)λ μ ν− − =

Figure 2. Diffeomorphism φ on the plane x q( )φ= .
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into a family of circles

( )q p
q

p 0, (46)2 2λ μ ν+ − − =

centered at

2
,

2
(47)⎜ ⎟⎛

⎝
⎞
⎠

μ
λ

ν
λ

and passing through the origin (see figure 3). When 0λ =
they degenerate into lines through the origin.

The Jacobian of the transformation

( )
J q p

x y

q p q p
( , )

( , )

( , )

1
, (48)

2 2 2
= ∂

∂
=

+

never vanishes as a consequence of the fact that φ is a
autodiffeomorphism of {(0, 0)}2 − . The origin (0, 0) is
irrelevant for tomographic integral transformations because
the singularity only affects a zero measure set.

Equations (41) and (42) then become

f
q

q p

p

q p

dq dp f q p

q

q p

p

q p

( , , )

( , )

(49)

2 2 2 2

2 2 2 2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟



∫

λ μ ν δ λ μ ν

δ

λ μ ν

= −
+

−
+

=

× −
+

−
+



and

( )
f q p d f

q p
( , ) d d ( , )

e

(2 )
. (50)

i

2 2 2 2

q

q p

p

q p

3

2 2 2 2
⎜ ⎟⎛
⎝

⎞
⎠∫ λ μ ν λ μ

π
=

+

λ− −μ ν

+ +



2.9. Tomography by hyperbolas in the plane

The family of lines

x y 0 (51)λ μ ν− − =

on the plane is mapped into a family of hyperbolas

q
p 0, (52)λ μ ν− − =

with asymptotes

q p0, (53)
λ
ν

= =

by the transformation

x y q p
q

p( , ) ( , )
1

, . (54)
⎛
⎝⎜

⎞
⎠⎟φ= =

For 0μ > the hyperbolas are in the second and fourth
quadrants, while for 0μ < they are in the first and third
quadrants (see figure 4). When 0μ = or 0ν = they
degenerate into horizontal or vertical lines, respectively.

The Jacobian

J q p
x y

q p q
( , )

( , )

( , )

1
, (55)

2
= ∂

∂
=

does not vanish again because φ is a diffeomorphism in
y y{(0, ), }2 − ∈  .

Equations (41)–(42) become

f
q

p

q p f q p
q

p

( , , )

d d ( , ) (56)
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟



∫

λ μ ν δ λ μ ν

δ λ μ ν

= − −

= − −


and

( )f q p f
q

( , )
d d d

(2 )
( , )

1
e . (57)q p

2 2
i

3
∫ λ μ ν

π
λ μ= λ μ ν− −



2.10. Hyperbolic tomography in Rn

It is possible to generalize this kind of hyperbolic tomography
in terms of quadratic forms Let us consider the following
tomographic map

f fp q q p q p q( , , ) d d ( · ( , )) ( , ),n n ∫ξ ξν λ δ λ ν= − −

where p and q are vectors in n and

q pp q( , ) (58)
j

n

j j j
1

∑ν ν=
=

Figure 3. Tomography by circles.
Figure 4. Tomography by hyperbolas induced by the map φ,
equation (54).
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is a bilinear nondegenerate diagonal form defined by a vector
( , , , )n

n
1 2ν ν ν ν= ⋯ ∈  .

This map corresponds to the deformation of a standard
multidimensional Radon transform by means of the following
local diffeomorphism

( ) ( )q p q q p, , , (59)i j i j jφ =

whose Jacobian is

J qq p
x y
q p

( , )
( , )

( , )
(60)

j

n

j
1

∏= ∂
∂

=
=

Thus, the inverse map is given by

f f

q

p q( , )
1

(2 )
d d d ( , , )

e (61)

n
n n

j

n

j
q p q

2

1

i( · ( , ))

∫

∏

ξ ν ξ ν
π

λ λ=

ξλ ν

=

− −

as can be derived from integration over λ

f f

q

q
f

f

p q p q p q

p p q

p p p p q

( , )
1

(2 )
d d d d ( , )

e

d d
2

e ( , )

d ( ) ( , ). (62)

n
n n n n

j

n

j
q

n n

j

n
j

n

p q q p q

p p q

2

1

i( · ( , ) · ( , ))

1

i ( , )

∫

∫

∫

∏

∏

ξ ν

ν

π

π

δ

= ′ ′ ′ ′

× ′ ′ ′

= ′ ′ ′

= ′ ′ − ′

ξ ξν ν

ν

=

+ − −

=

−

This corresponds to the higher dimensional generalization of
the Bertrand–Bertrand tomography [Be87].

Notice that the distribution of hyperboloids in the plane
when n = 2 is quite different from those analyzed in the
previous subsection (see figure 5).

2.11. Tomography by quadrics

We remark that the above generalizations of x-ray tomograms
involve integration over unbounded submanifolds. It will be
interesting to generalize the Radon transform over compact
submanifolds.

This can be achieved by shifting a given pattern of
quadrics like

Bq q a q( ) · ( )) · ( ) (63)λ μ μ μ= − − + −

where B is a nondegenerate symmetric operator and
a, nμ ∈  . A new tomographic map can be defined by

f f

B

q q

q q a q

( , ) d ( )

( ( ) · ( ) · ( )). (64)

B
n

a
 ∫μ

μ μ μ

λ

δ λ

=

× − − − − −

When B 0μ= = the transform (64) reduces to the standard
Radon transform. But in general (64) defines a completely
different type of transform supported on the quadrics defined
by equation (63). It is easy to show that the inverse map is
given by

f
B

fq( )
det

d d ( , )

e . (65)

n
n

B

B

a

q q a qi( ( )· ( )) ·( ))

∫ μ μ
π

λ λ=

× μ μ μλ− − − − −

This can shown by plugging the definition of the tomographic
map (64) into (65)

B

B

B fa

det
d d e

det
d d e

d ( ( ) · ( ) · ( )) ( ),

n
n B f

n
n B

n

q q a q

q q a q

i( ( )· ( )) ·( )) ( , )

i( ( )· ( )) ·( ))

Ba
∫

∫
∫

μ

μ

ξ ξ μ ξ μ ξ μ ξ

π
λ

π
λ

δ λ

=

× − − − − −

μ μ μ μ

μ μ μ

λ λ

λ

− − − − −

− − − − −

which integrating over λ gives

( )

B
f

B
f

f fq q

det
d ( )

d e

det
d d ( )e

d ( )e ( ) ( ).

n
n

n B B

n
n n B B B B

n B B n

q q a q

q q q a

q q

i(( )· ( ) ( )· ( ) ·( ))

i · · ( )·2 2

i[ · · )]

1⎡⎣ ⎤⎦

∫
∫

∫
∫

ξ ξ

μ

ξ μ ξ

ξ ξ ξ

π

π

δ

×

=

= − =

ξ μ ξ μ μ μ ξ

ξ ξ ξ μ

ξ ξ

− − − − − − −

− + − −

−

−

The meaning of the above tomographic map depends on
the physical character of B. If we assume that B is strictly
positive (elliptic case), the map corresponds to averages of f
along the ellipsoids defined by equation (63). In particular, if
a = 0 and all eigenvalues of B are equal to b2 it corresponds to

Figure 5. Hyperbolic tomography induced by the map φ, defined by
equation (59).

Figure 6. Tomography on circles in the plane for the Hall effect.
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integration over spheres centered at μ (see figure 6)

b q( ) . (66)2 2μ λ− =

The two dimensional case corresponds to trajectories of
particles moving under the action of a constant magnetic field
on a plane (Hall effect).

In the case that B has positive and negative eigenvalues
this corresponds to the hyperbolic tomography which avera-
ges at f along the hyperboloids defined by the equation (63),
e.g.,

b q c q( ) ( ) . (67)2
1 1

2 2
2 2

2μ μ λ− − − =

In the case of degenerated B forms we have a hybrid
transform. B can be decomposed into a nondegenerated
bilinear form and a linear form. In that case, the tomography
of the linear components should be treated as the standard
Radon transform, whereas the nondegenerate variables should
transform as above.

Notice that the distribution of circles is quite different
from those obtained by the Radon transform defined by
rescaling in subsection (2.8). In that case the centers and the
radius changed from one circle to another, whereas here all
the circles are of fixed radius and only the center of the circles
are varying by shifts. The new tomographic map makes
possible a local implementation of tomography because the
marginals involved in the reconstruction of f p q( , ) only
involve integrations in the compact domain around the point
(p,q). The trajectories involved in the construction of the
tomogram are all trajectories of a charged particle with the
same energy moving in a constant magnetic field. This points
out the possible applications to tomography by charged par-
ticles moving on a transversal magnetic field over samples
with smaller sizes than the cyclotron radius mv eB.

Finally we remark that the simplicity of the inverse for-
mula seems to be related to the integrable character of the
underlying dynamical system whose ray trajectories are
involved in the construction of the tomogram. We conjecture
that this is a generic issue, i.e. tomograms defined by phase
space trajectories of integrable systems have simple analytic
inversion formulas.

3. Tomography and coherent states

There are several representations of quantum states providing
the possibility to present equivalent, but different in their
form, formulations of quantum mechanics [St02]. Among
them, the Wigner quasi-distribution function [Wi32] and the
well-known Husimi–Kano K− function [Hu40, ka56] (in this
paper we have decided to keep up with the original notations
of the pioneer papers on the subject). Quasi-distributions are
usually referred to as phase space representations of quantum
states. Another important phase space representation is related
to the Sudarshan’s ϕ diagonal coherent-state representation
[Gl63, Su63]. Interestingly, the last two phase space repre-
sentations, K and ϕ, are based on the use of coherent states

and allow for an interpretation in a tomographic scheme
which fits nicely in the general description given above.

In the quantum case, tomography may also be cast in a
quantizer-dequantizer scheme. In this sense, the Husimi–
Kano function is a dequantization, and the Sudarshan’s ϕ is
just its dual symbol. So, the coherent-state tomographic point
of view provides a unifying description that encompasses also
the so-called photon number tomography. Here, we limit
ourselves to coherent-state (CS) tomography for a single
degree of freedom, and we adopt a pedagogical style which is
reminiscent of many joint papers with Volodya Man’ko.

3.1. Coherent states: main properties

In the case of a single degree of freedom, the Weyl map
associates with any point x( , )α of the phase space of the
system a unitary operator W xˆ ( , )α acting on a Hilbert space

, which can be realized in terms of square integrable
functions x( )ψ [Es14]. Upon switching to complex numbers
z x( i ) 2α= + , we recognize that W xˆ ( , )α is nothing but
the usual displacement operator

( )z za z aˆ ( ) exp ˆ * ˆ , (68)†= −

which acting on the vacuum Fock state 0∣ 〉, â 0 0,∣ 〉 =
generates the coherent state z ,∣ 〉 where

( )( )z
z

za z a

z z

j
a

exp
2

exp ˆ exp ! * ˆ 0

exp
2 !

ˆ 0 . (69)
j

j
j

2
†

2

0

†

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ∑

= − −

= −
=

∞

We recall that the coherent states are a (over-) complete
set in the Hilbert space . Any bounded set containing a limit
point z0 in the complex z-plane defines a complete set of
coherent states containing a limit point, the coherent state
z ,0 in the Hilbert space . In particular, any Cauchy
sequence z{ }k of complex numbers defines a Cauchy
sequence of coherent states { }z ,k which is a complete set.
The same holds for any extracted subsequence. This com-
pleteness property holds as ( )z zexp 22 ψ∣ is an entire

analytic function of the complex variable z*, for any
ψ ∈ . Then

z k0 0, (70)k ψ ψ= ∀ ⇒ =

because z0
* is a non-isolated zero of an analytic function.

Besides, any bounded operator Â may be completely

reconstructed from its diagonal matrix elements z A zˆ .k k

In fact, ( )z z z A zexp 2 2 ˆ2 2+ ′ ′ is an analytical

function of the complex variables z z*, ,′ so it is uniquely

determined by its value ( )z z A zexp ˆ2 on the diagonal

z z.′ = This is an entire function of the real variables z z, ,R I
which is in turn uniquely determined by its values on any set
with an accumulation point.
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3.2. Tomographic sets in infinite dimensional spaces

The nice properties of the coherent states previously dis-
cussed are the grounds on which CS tomography can be built.
With this aim, we need to introduce a linear space V and its

dual V*.
Preliminarily, consider an abstract case. Suppose we have

chosen in V* the tomographic set of observables  para-
metrized as { }P Iˆ , ν ∈ν , where ν is a multi-index belonging
to a set of indices I. In the infinite dimensional case there are
several relevant spaces that one could choose as V, like the
space of bounded operators B ( ) and that of compact
operators C H( ), the space of Hilbert–Schmidt operators 2I
and that of trace-class operators 1I . Their mutual relations are:

C B( ) ( ). (71)1 2I I⊂ ⊂ ⊂ 
B ( ) (and C ( ) ) are Banach spaces, with the norm
A Aˆ sup ˆ ,( 1) ψ= ψ = while 2I is a Hilbert space with

scalar product ( )A B A Bˆ ˆ Tr ˆ ˆ†∣ = . Finally, 1I is a Banach

space with the norm ( )A Aˆ Tr ˆ .
1

= The following

inequalities hold true:

A A Aˆ ˆ ˆ . (72)
2 1

⩽ ⩽

So 2I , the only Hilbert space at our disposal to implement our
definition of the tomographic set, is endowed with a topology
which, when restricted to the trace-class operators, is not
equivalent to the topology of 1I . Similar problems show up in
the identification of states and maps in infinite dimen-
sions [Gr].

However, as any density state is associated with a trace
class operator ˆ ,ρ the natural choice is to identify the space V
with 1I . Then, recalling that 1I is a *− ideal in its dual space
B ( ) :

B ( ), (73)1
*I = 

we have V B* ( )=  . So, the tomographic map Fρ̂ defined on

the tomographic set { }P Iˆ , ,ν= ∈ν is just the value of the

linear functional ( )PTr ˆ ·ν in .ρ̂ In other words, we can write the
tomographic pairing between states and observables as

( ) ( ) ( )P F P Pˆ , ˆ : ˆ : Tr ˆ ˆ (74)ˆμ ρ ρ= =ν ρ ν ν

The invertibility of the map Fρ̂, or, equivalently, the full
reconstruction of any density state ρ̂ from its tomograms is
guaranteed if we choose a tomographic set of trace class
observables, e.g., rank-one projectors, complete in .1I The
completeness of the tomographic set yields

( ) ( )F P P Iˆ Tr ˆ ˆ 0 ˆ 0. (75)ˆ ρ ν ρ= = ∀ ∈ ⟹ =ρ ν ν

The choice of tomographic sets as complete sets of rank-
one projectors gives the possibility to extend the tomographic
representation to observables or, in general, to bounded
operators. To do that, we have to interchange the role of states
and observable. We can use the self-duality of the Hilbert-
Schmidt space .2I So, the tomographic set is a set of density

states, complete in 2I , and the invertibility of the tomographic
map associated to a bounded operator Â reads

( )( )F P P A P A

I A and A

ˆ : ˆ ˆ Tr ˆ ˆ 0

ˆ 0 ˆ (76)

Â

2Iν

= = =

∀ ∈ ⟹ = ∈

ν ν ν

Then, as 2I is a *− ideal in B ( ), there may exist a non-zero
operator B̂, which is bounded but not Hilbert–Schmidt, such
that

( )P B ITr ˆ 0 (77)ν= ∀ ∈ν

So, different operators may be tomographically separated
only when their difference is Hilbert–Schmidt. In other

words, by choosingV V* 2I= = one cannot get tomographic
representations of bounded, not Hilbert–Schmidt operators.
Nevertheless, there exists the possibility of such a representa-
tion when the set { }P̂ν of rank-one projectors is complete
even in 1I . Then, recalling that 1I is a *− ideal in its dual

space B ( ) , the expression ( )P ATr μ is nothing but the value

of the linear functional ( )ATr · ˆ in P̂ν and the invertibility
condition holds without constraints:

( )P A I

A A A

Tr ˆ 0

0 Tr(· ) 0. (78)

ν= ∀ ∈ ⟹
= = ⟹ =

ν

So, any bounded operator can have a tomographic
representation based on sets of rank-one projectors which are
complete both in 2I and in 1I . As it turns out, this is the case
for the main tomographic sets. The rank-one projectors
P z zẑ = ∣ 〉〈 ∣ associated with a complete set of coherent states
are complete in the Hilbert space 2I . In particular, any Cauchy

sequence { }zk generates a tomographic set { }z zk k . In
fact, bearing in mind the previous remark on the reconstruc-
tion of a bounded operator, it results

( )A z z z A z

k A and A B

Tr 0

0 ( ). (79)

k k k k= =
∀ ⇒ = ∈ 

This shows that a tomographic set of coherent state projectors
is complete even in .1I

3.3. Coherent state tomography

Hereafter, we address the case when z varies in the whole
complex plane, and call CS tomography only the tomography
based on the whole set of rank-one projectors
P z z z{ } { },z = ∣ 〉〈 ∣ ∈ .

It is possible to interpret the well known Husimi–Kano
K-symbol of a (bounded) operator Â as the CS tomographic
representation of Â :

( )K z z A z z z A( ) : ˆ Tr ˆ . (80)A = ≕

In particular, when Â is chosen as a density operator ˆ ,ρ the
identity holds

( )z
z z

d
ˆ Tr ˆ 1, (81)

2

∫ π
ρ ρ= =
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which allows for the probabilistic interpretation of CS
tomography. As a matter of fact [Su68], the K-symbol exists
also for a number of nonbounded operators. The CS
tomographic set is complete both in 2I , the space of
Hilbert–Schmidt operators, and in ,1I the space of trace class
operators acting on the space of states. In fact, the formulae

A
z z

z A z z zˆ d d ˆ (82)
2 2

∫ π π
=

′ ′ ′

and [Ma95]

( )

( )

( )
z A z

z z

n m

z z
z A z

ˆ e
*

! !

*
e ˆ (83)

*

n m

n m

n m

n m
z

, 0

z z

z
z

2 2

2

2

0
0

⎡
⎣⎢

⎤
⎦⎥

∑′ =
′

× ∂
∂ ∂

−

=

∞

+

+ ′

=
=

show that if the tomograms z A zˆ of a bounded operator

Â vanish for any z ∈  , then Â is the zero operator.
So, a resolution of the unity exists, which allows for the

full reconstruction of any density state or (bounded) operator
from its CS tomograms. We are interested in the explicit
determination of such a formula. Now, the Sudarshan’s
diagonal coherent state representation z( )Aϕ of an operator Â
is defined through the equation

A
z

z z zˆ d
( ) . (84)A

2

∫ π
ϕ=

So, to get the tomographic reconstruction formula we have to
invert the well-known relation

( )K z z A z
z

z z z

z
z

ˆ d
( )

d
( )e (85)

A A

A
z z

2 2

2 2

∫

∫
π

ϕ

π
ϕ

′ = ′ ′ = ′

= − − ′

which follows at once from equation (84), defining z( )Aϕ .
This relation shows that K z( )A ′ is given by the convolution
product of Aϕ times a Gaussian function. Then, denoting with
K u v( , )A ′ ′ and u v( , )Aϕ the K and ϕ symbols, with
z u vi′ = ′ + ′ and z u vi= + , the Fourier transform [Sc01]
of equation (85 ) reads:

( )u v
K u v

u v u v
u v

d d

2
, e

d d

2

d d
( , )e e (86)

( )

( ) ( ) ( )

A
u v

A
u u v v u v

i

i2 2

∫
∫ ∫

π

π π
ϕ

′ ′ ′ ′

=
′ ′

ξ η

ξ η

− ′+ ′

− − ′ − − ′ − ′+ ′

and we readily obtain

( )K̃ ( , ) e ˜ ( , ), (87)A A
42 2ξ η ϕ ξ η= ξ η− +

from which

( ) K˜ ( , ) e ˜ ( , ), (88)A A
42 2ϕ ξ η ξ η= ξ η+

that formally yields

( )u v
d

K( , )
d

2
e ˜ ( , )e . (89)A A

u v4 i( )2 2∫ϕ ξ η
π

ξ η= ξ η ξ η+ +

The presence of the anti-Gaussian factor shows that the
inverse Fourier transform of ˜ ( , )Aϕ ξ η exists only when the
asymptotic decay of K̃ ( , )A ξ η is faster than the growth of

e .( ) 42 2ξ η+ However, the integral always exists as a distribu-
tion, as was proven in [Me65]. By virtue of this remark, we
may go on and substitute the previous expression into
equation (84), getting

( )

( )

( )

A
z

K

z z
z d u v

K u v z z

ˆ d d d

2
e ˜ ( , )e

d d

2

d d

2

, e e . (90)( ) ( )

A
u v

A
u u v v

2
4 i( )

2

4 i

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

∫ ∫

∫ ∫ ∫
π

ξ η
π

ξ η

π
ξ η
π π

=

× =
′ ′

× ′ ′

ξ η ξ η

ξ η ξ η

+ +

+ − ′ + − ′

Upon interchanging the order of integration, we may write the
expected reconstruction formula as

( ) ( )A
z

G z K zˆ d ˆ , (91)A

2

∫ π
=

′ ′ ′

where the operator G zˆ ( )′ reads:

( )

( )

G z
z

z z

ˆ :
d

2

d d

2

e e . (92)( ) ( )u u v v

2

4 i2 2 ⎡⎣ ⎤⎦

∫ ∫π
ξ η
π

′ =

× ξ η ξ η+ − ′ + − ′

In other words, the CS tomographic set, like any other
tomographic set, is associated with a resolution of the unity

( )( )z
G z z zˆ d ˆ Tr · . (93)

2

∫ π
=

′ ′ ′ ′

In a quantizer-dequantizer scheme, the operator P z zẑ = ′ ′
is the dequantizer, while G zˆ ( ) is the quantizer. Since

( ) ( )

( )

z z
z

z z z z

z z

d

, (94)

z z z z

2

∫ π
ϕ ϕ

πδ

=
′ ′ ′ ′ ⇔ ′

= − ′

we observe that

( )

( ) ( )

( )[ ]

[ ]

K z z G z z

K
d

z z z

( ) ˆ d d

2

e e ˜ ( , )
d

2

e ˜ ( , ) , (95)

( )G z

u v
z z

u v
z z z z

i 4

i

2 2

∫
∫

ξ η
π

ξ η ξ η
π

ϕ ξ η ϕ πδ

= ′ =

× =

× = ′ = − ′

ξ η ξ η

ξ η

′

− ′− ′ +

− ′− ′

and remark that this result amounts to the orthonormality
relations of the pair quantizer-dequantizer:

( )( ) ( )K z z z G z z z( ) Tr ˆ . (96)( )G z πδ= ′ = − ′′

If one exchanges the roles in the pair, and bears in mind the
definition of G zˆ ( ), one recovers the dual symbol of an
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operator as its Sudarshan’s symbol ϕ,

( )( )

( )

( )

[ ]

[ ]

G z A

K

d
z

Tr ˆ ˆ d d

2
e

e ˜ ( , )
d

2
e ˜ ( , ) . (97)

u v

A

u v
A A

i

4

i

2 2

∫

∫

ξ η
π

ξ η
ξ η
π

ϕ ξ η ϕ

′ =

×

= = ′

ξ η

ξ η

ξ η

− ′− ′

+

− ′− ′

In this dual theory, the definition of the Sudarshan’s symbol
as diagonal representation, equation (84), appears as a
reconstruction formula, the quantizer being P̂z. In a tomo-
graphic picture of quantum mechanics, this gives the
possibility of representing in tomographic, i.e., ‘inner’, terms,
quantities such as expectation values of observables

( ) ( )A
z

K z G z A

z
K z z

Tr ˆ ˆ d
( ) Tr ˆ ( ) ˆ

d
( ) ( ). (98)A

2

2

∫

∫

ρ
π

π
ϕ

=

=

ρ

ρ

We remark that, in the context of the Agarval–Wolf operator
ordering theory [Ag68, Ma95], the K and ϕ symbols,
appearing in our direct and dual reconstruction formulae,
are related to the Wick (i.e., normal) and anti-Wick ordering,
respectively. Of course, if one insists on requiring only the
use of CS tomographic representation, one needs to introduce
a star-product by means of an integral kernel:

( )

( )

( )A K z K K z

z z
K z K z z z z

z z z G z G z P

Tr ˆ ˆ ( ) ( )

:
d d

( ) ( ) ( , , )

( , , ): Tr ˆ ( ) ˆ ( ) ˆ . (99)

A A

A

z

2
1

2
2

1 2 1 2

1 2 1 2

∫

ρ

π π

= = ⋆

=

=

ρ ρ

ρ 

More details on star-product kernels are contained in a recent
work with Volodya Man’ko [Ib13]. We conclude by
observing that CS tomography can be generalized by using
coherent states and nonlinear coherent states of deformed
oscillators, including q-oscillators. This generalization was
analyzed in [Ma08].

4. Tomography and the algebraic description of
quantum systems

As discussed in the introduction, the algebraic description of
quantum systems based on the theory of C*-algebras emerges
from an analysis of the fundamental structures needed to
describe physical systems. The tomographic description of
them has been started recently in [Ib13], (see also [Lo14] and
references therein).

Jordan algebras were introduced by P Jordan as an
attempt to unfold the algebraic structure of quantum systems,
but it was only after the work of Alfsen and Schultz [Al98]
that the exact relation with the theory of C*-algebras was
established. Recently, this relation was revisited by Falceto
et al [Fa13, Fa13b] and the relation between C*-algebas and
Lie–Jordan Banach algebras was clearly established. This
equivalence was used too to describe the theory of reduction

of C*-algebras described in terms of Lie–Jordan–Banach
algebras.

In this section the first steps towards a tomographic
description of quantum systems based on C* and Lie–Jordan
algebras will be established. One of the main outcomes of the
theory is that it fits nicely with the tomographic description
based on groups, as will be shown in what follows. Thus, we
will review first the basic notions from the theory of C* and
Lie–Jordan algebras that will be needed, and after this the
tomographic description of a quantum system described by a
Lie–Jordan algebra and a group representation will be suc-
cinctly described.

4.1. C*-tomography

We will consider a quantum system described by a unital C*-
algebra , whose self-adjoint part constitutes the Lie–Jordan–
Banach algebra of observables of the theory. The states of the
system are normalized positive functionals :ρ → ,

( )a a a( ) 1, * 0,ρ ρ= ⩾ ∀ ∈ 

and they determine a weak*–compact subset S ( ) of the
topological dual ′ .

Given a ∈ , the number a( )ρ is the expected value of
the observable measured in the state ρ, also denoted as a〈 〉ρ.
Hence, for each self-adjoint element a ∈ , we may define a
continuous affine function a Sˆ: ( ) → , a aˆ ( ) ( )ρ ρ= . The
Kadison theorem [Ka51] states that the correspondence
a â↦ is an isometric isomorphism from the self-adjoint part
of  onto the space of all real continuous affine functions on
S ( ) . Notice that the Hilbert space picture of the system,
once a state is given, can be recovered by means of the GNS
construction [Na72].

If we consider now the general background of tomo-
graphy as stated in section 1.2, we may consider that the
space of states is a subset of the linear space V = ′ .
Moreover, because ⊂ ″  , then we may think that the

elements α in the dual V* are going to lie in V*⊂ .
Thus the tomographic description of the state ρ of  will

consist of assigning to this state a probability density function
Wρ, that we will call ‘tomogram’, on some auxiliary space 
such that, given Wρ, the state ρ can be reconstructed
unambiguously.

Hence we consider a family of elements in  para-
metrized by an index which can be discrete or continuous, the
elements of  , or, in other words, consider a map
U: →  and we will denote by U(x) the element in 
associated with the element x ∈  . The family
U x x{ ( ) }∣ ∈  will be called a tomographic set if it separates
states, i.e., given S, ( )1 2ρ ρ ∈  , if 1 2ρ ρ≠ , then x∃ ∈ 
such that U x U x, ( ) , ( )1 2ρ ρ〈 〉 ≠ 〈 〉.

Given a state ρ and a tomographic set U, we will call the
function F : →ρ  , defined as (recall equation (1)):

F x U x( ) , ( ) ,ρ=ρ

the sampling function of ρ with respect to U.
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Let us assume that  is a topological space with a
positive Borel measure μ on it. We will also assume that the
map U is continuous and integrable in the sense that for any

S ( )ρ ∈  , the sampling function F : →ρ   is integrable,

that is, F L ( , )1 μ∈ρ  . The auxiliary space  (and the
measure μ on it) used in the theory could depend on the
specific problem. Later on a rather general way of selecting
the auxiliary spaces by means of groups and their unitary
representations will be discussed (see section 4.3).

In order to guarantee that the assignment Fρ ↦ ρ is
invertible, we will assume that there exists another map
D: → ′  which is integrable in the sense that for any
a ∈  the function G x D x a( ) ( ),a = 〈 〉 is integrable, and such
that

D x U x x x x x( ), ( ) ( , ), , , (100)δ′ = ′ ′ ∈ 
where x x( , )δ ′ is the delta distribution along the diagonal on

×  , that is:

x x x x x( ) ( , ) ( )d ( ), (101)∫ϕ δ ϕ μ= ′ ′ ′
where ϕ is a continuous function with compact support on  .
If a map D exists satisfying the property (101) we will say
that U and D are biorthogonal.

If we denote now by x F x U xˇ ( ) ( ) , ( )ρ ρ= = 〈 〉ρ and by

x D x xˆ ( ) ( )d ( ),∫ϕ ϕ μ= 
with ϕ an integrable function, then it is easy to see that

x xˆ̌ ( ) ( )ϕ ϕ= and ˇ̂ρ ρ= .
It is also noticeable that because

F x x U x x

U x x

( )d ( ) , ( ) d ( )

( )d ( ) ,⎜ ⎟⎛
⎝

⎞
⎠

∫ ∫
∫

μ ρ μ

ρ μ

=

=

ρ 



it is convenient to assume that

U x x( )d ( ) .∫ μ = 

If U(x) satisfies this, then we will say that U(x) is normalized.
In such a case it is clear that

F x x( )d ( ) 1.∫ μ =ρ
We may recast the previous theorem by computing first

the ˆ map and later the ˇ map on Fρ:

F D x F x xˆ ( ) ( )d ( ), (102)∫ μ=ρ ρ
then if we apply the ˇ map first, we get

F x F x U x

F x D x U x x

F x x

ˆ̌ ( ) ˆ ( ), ( )

( ) ( ), ( ) d ( )

( ), . (103)

∫ μ

′ = ′

= ′

= ′ ∀ ′ ∈

ρ ρ

ρ

ρ 


We may also define another function F x x( , )′ρ depending
on two arguments instead of one:

F x x U x U x( , ) , ( )* ( )ρ′ = 〈 ′ 〉ρ for any x, x′ ∈  . We will say
that a function F: × →   is positive, or of positive
type, or positive semi-definite, if N∀ ∈  and iξ ∈ , xi ∈ 
, i N1 ,= … , we have:

F x x¯ ( , ) 0. (104)
i j

N

i j i j

, 1

∑ξ ξ ⩾
=

Then it is easy to check that given a state ρ and a
tomographic set U: →  in a C*-algebra , then the

function F x x U x U x( , ) , ( )* ( )ρ′ = 〈 ′ 〉ρ is positive semi-defi-
nite. In fact, the following simple computation shows it.

F x x U x U x

U x U x

U x U x

¯ ( , ) ¯ , ( )* ( )

, ¯ ( )* ( )

, ( )
*

( ) 0.

i j

N

i j i j

i j

N

i j i j

i j

N

i j i j

i

N

i i

j

N

j j

, 1 , 1

, 1

1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑

∑

∑ ∑

ξ ξ ξ ξ ρ

ρ ξ ξ

ρ ξ ξ

=

=

= ⩾

ρ
= =

=

= =

We will take advantage of this property later on when dealing
with tomography in groups.

4.2. Equivariant tomographic theories on C*–algebras

We will encounter in many situations the presence of a group
in the theory whose states we want to describe tomo-
graphically. This group could be a group of symmetries of the
dynamics of the system or a group which is describing the
background of the theory. In any of these circumstances we
will assume that there is a Lie group G acting on the C*-
algebra , i.e., we have a strongly continuous map
T G: Aut( )→  such that

T T T T g g G, , , .e g g g g 1 21 2 1 2
= = ∀ ∈

In such a case we will need to assume that the group G acts on
the auxiliary spaces used to construct the tomographic picture.
Thus, the group G will act on  , and such action will be
simply denoted as x g x·↦ , x ∈  .

The natural compatibility condition for a tomographic
mapU: →  to be compatible with the group G present in
the theory is equivariance, i.e.,

U g x T U x x g G( · ) ( ( )), , . (105)g= ∀ ∈ ∈
This could be interpreted by saying that if the parameters x x, ′
parametrizing two sampling elements U(x) and U x( )′ in ,
are related by an element g of the group, i.e., x g x·′ = , then
the two sampling observables U(x), U x( )′ are also related by
the same element of G.

Under these conditions, it is easy to conclude that the
sampling function Fρ corresponding to the state ρ satisfies the
following:

F g x F x( · ) ( ), (106)*Tg
=ρ ρ
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because

F g x U g x T U x

T U x F x

( · ) , ( · ) , ( ( ))

, ( ) ( ), (107)*

g

g T
*

g

ρ ρ

ρ

= =

= =

ρ

ρ

where Tg
*ρ denotes the adjoint action of G on ′ . Notice that

if ρ is an invariant state, Tg
*ρ ρ= then the corresponding

sampling function will be invariant too.

F g x F x G x( · ) ( ). , . (108)= ∀ ∈ ∈ρ ρ 
We will also consider that situation where the group G

acts on the space M defining the space of classical functions
whose tomograms we would like to obtain. We will denote
again such action by y g y·↦ , y M∈ . The generalised
Radon transform M: ( )→ ′   should be equivariant, this
is

g y g y( · ) * ( ), (109)= 
where g* indicates now the natural action induced on the
space M( )′ in the dual of the space of functions onM, by the
action of G on M. More explicitly

g y F y g F

g F x F g x

*( ( )), ( ), *

and * ( ) ( · ). (110)

=

=

 

Now, if  is actually a generalized Radon transform and Wρ
denotes the tomogram of the state ρ, we will have:

W g y g y F g y F

y g F y F

W y

( · ) ( · ), * ( ),

( ), * ( ),

( ). (111)

*

*

g

g

= =

= =

=

ρ ρ ρ

ρ ρ

ρ

 
 

Then we conclude this discussion by observing that if ρ is an
invariant state, the tomogram defined by it is actually
invariant:

W g y W y g G( · ) ( ) . (112)= ∀ ∈ρ ρ

4.3. Unitary group representations on C*-algebras

We will discuss now a particular instance of the tomographic
programme discussed above where a Lie group G plays a
paramount role. We will find this situation, for instance, in
spin tomography where the group G will be the group SU(N),
but such a situation is found also in standard homodyne
tomography, which could be understood in similar terms with
the group G being the Heisenberg–Weyl group.

Now we will assume that the auxiliary space  is a
group G and the tomographic mapU G: →  is provided by
a continuous unitary representation of G on , that is,

U g U g U g( )* ( ) ( )1 1= =− − is a unitary element in the C*-
algebra , and U g g U g U g( ) ( ) ( )1 2 1 2= and U e( ) = . Then
we may denote by T G: Aut( )→  , the action of G on  by
the inner automorphism given by

T a U g a U g a g G( ) ( )* · · ( ), , .g = ∈ ∈

Then we can see immediately that we have the equivariance
property for the tomographic map with respect to the action of
G on itself by conjugation:

( ) ( )U g hg U g U h U g

T U h g h G

· ( ) · ( )

( ( )), , . (113)g

1 1=
= ∈

− −

The sampling function corresponding to the state ρ is given
by

F g U g( ) , ( ) , (114)ρ=ρ

and we may check that the map F G: →ρ  is a positive
semidefinite map in the sense that the map F g h( , )ρ of two
arguments defined as

( )F g h F g h g h G( , ) , ,1= ∈ρ ρ
−

is positive semidefinite, i.e. N∀ ∈ , iξ ∈ , g Gi ∈ , i = 1,
…,N, then

( )F g g¯ 0. (115)
i j

N

i j i j
, 1

1∑ξ ξ ⩾ρ
=

−

Naimark’s theorem [Na72] establishes that given a
positive semidefinite function F on a group G, there exists a
Hilbert space F , a continuous unitary representation
U G: ( )F F→   and a vector 0 F∣ 〉 ∈  such that

F g U g( ) 0 ( ) 0 . (116)F=

The relation between the state 0 0 Fρ∣ 〉〈 ∣ = , the representation
UF, the original state ρ and the original representation U has
been discussed recently [Ib11].

In order to now define the generalized Radon transform
that will describe the tomogram corresponding to the state ρ,
we will consider now the Lie algebra g of the group G and the
auxiliary space g × . In g ×  we have defined the natural
extension of the standard exponential map Gexp: g × →
given by s sexp( , ) exp ( ) ξ ξ= .

The unitary representation of G on  defines a Lie
algebra homomorphism from g into sa , where sa denotes

the self-adjoint part of , that is, { }a a a*sa = ∈ ∣ =  .

Given any gξ ∈ , we denote by ξ̂ the element of sa defined
as:

( )
s

U s
s

U sˆ i
d

d
(exp (i )) i exp( , ) ,(117)

s s0 0

ξ ξ ξ= − = − ∂
∂= =

Clearly ˆ* ˆξ ξ= and

ˆ, ˆ [ , ], , . (118)⎡⎣ ⎤⎦  gξ ζ ξ ζ ξ ζ= ∀ ∈

4.4. The GNS construction and unitary group representations
on C*-algebras

Given the state ρ, the GNS construction allows us to represent
the C*-algebra  as operators acting on a Hilbert space ρ .
To be precise, consider the Hilbert space ρ obtained as the
completion of the space ρ  , where kerρ=ρ is the
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Gelfand ideal defined by ρ, with respect to the inner product,
defined as:

( )a b a b

a a b b

[ ], [ ] * ,

[ ] , [ ] . (119)

ρ=

∀ = + = + ∈ρ ρ ρ   
Then there is a natural representation : ( )π →ρ    given
by:

a b a b b( )[ ] [ · ], [ ] . (120)π = ∀ ∈ρ ρ
The unitary representation U G: Aut( )→  of the group G
becomes a unitary representation Uρ of G on ρ by means of
U Uπ= ◦ρ ρ , i.e., U G: ( )→ρ ρ  is the map defined by

U g U g( ) ( ( )).π=ρ ρ

Notice that because U is unitary, U(g) is a unitary element in
, then U g( ( ))πρ is a unitary operator on ρ . In fact, for all
a b[ ], [ ] ∈ ρ we have:

( )
( )

U g a U g b U g a

U g b U g a U g b

( )[ ], ( )[ ] ( ) [ ],

( ) [ ] ( ) , ( ) (121)⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

π

π

=

=

ρ ρ ρ ρ ρ

ρ ρ
ρ

ρ ρ
ρ

( )
( )U g a U g b

a b a b

( ) * ( )

* [ ], [ ] . (122)

⎛
⎝⎜

⎞
⎠⎟ρ

ρ

=

= =

ρ ρ

ρ

If we consider now the induced map sag →  , we will
obtain that the element gξ ∈ will be mapped by the repre-
sentation πρ into a self-adjoint operator on ρ . We will

denote the operator defined in this way by ξ̂ρ, that is:

a
s

U s a

s
U s a

i ˆ ([ ])
d

d
(exp ( )[ ])

d

d
( (exp ( )[ ])) (123)

s

s

0

0

ξ ξ

π ξ

=

=

ρ ρ

ρ

=

=

s
U s a

s
U s a a

d

d
[ (exp ( )) ]

d

d
(exp ( )) · i ˆ . (124)

s

s

0

0

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

ξ

ξ ξ

=

= =

=

=

Because of Stone’s theorem, we know that there exists a
unique strongly continuous one-parameter group of unitary
operators Us

ξ on ρ such that

s
U a a

d

d
[ ] i ˆ [ ], (125)s

s 0

ξ=ξ
ρ

=

thus:

U U s U se (exp ( )) (exp ( )). (126)s
s

i ˆ ξ π ξ= = = ◦ξ ξ
ρ ρρ

Finally, the spectral theorem applied to the self-adjoint
operators ξ̂ρ asserts that there is a Borelian spectral measure

Eξρ in the real line such that

Eˆ d ( ), (127)∫ξ λ λ=ρ ξρ

hence

U Ee d ( ).s
si∫ λ=ξ λ

ξρ

Now, we will consider as auxiliary space  the space g × ,
and we will define the map G: ( ( ))g × → ′  as follows:

F F s s( ; )( )
1

(2 )
e (exp ( ))d . (128)s

2
i∫ξ λ

π
ξ= λ−

To be precise, the map  is defined from g ×  into the
space of continuous functions on the exponential of g,

Gexp ( )g ⊂ . For groups such that Gexp ( )g = , i.e. expo-
nential groups, we have the map written above.

Then we will call the function F( ; )( )ξ λ ρ correspond-
ing to the tomographic function Fρ defined by the state ρ, the
tomogram of ρ and it will be denoted byW ( ; )ξ λρ . Notice that
we may fix 1λ = to get:

W F s s( )
1

(2 )
e (exp (i ))d . (129)s

2
i∫ξ

π
ξ=ρ ρ

−

Notice that if we compute the inverse Fourier transform
of the tomogram Wρ, we have:

F s W(exp ( )) e ( ; )d (130)si∫ξ ξ λ λ=ρ
λ

ρ

and if we consider now that

F s U s

U s

(exp ( )) , (exp ( ))

0 (exp ( )) 0 (131)

ξ ρ ξ
ξ

=
=

ρ

ρ

E

E

0 e d ( ) 0

e 0 d ( ) 0 . (132)

s

s

i

i

∫
∫

λ

λ

=

=

λ
ξ

λ
ξ

ρ

ρ

Then if the measure E0 d 0,μ = 〈 ∣ ∣ 〉ξ ρ ξρ is absolutely
continuous with respect to the Lebesgue measure, we will
have that W( ) ( ; )d,μ λ ξ λ λ=ξ ρ ρ , and W ( ; )ξ λρ will be the
Radon–Nikodym derivative of ,μξ ρ with respect to dλ. Hence,
we have obtained that, under these conditions, the tomogram
Wρ of the state ρ can be written as:

W ( ; ) , (133)
,

ξ λ
δμ

δλ
=ρ

ξ ρ

where ,δμ δλξ ρ denotes the Radon–Nikodym derivative of

,μξ ρ with respect to the Lebesgue measure dλ.
Finally, suppose that ω is a density operator on ρ . We

will define its tomographic function by F g U g( ) Tr ( ( ))ω=ω ρ
and its tomogram W ( ; )ξ λω as;

W F s s( ; )
1

(2 )
e (exp ( ))d .s

2
i∫ξ λ

π
ξ=ω

λ
ω

−
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Then computing the inverse Fourier transform ofW ( ; )ξ λω we
will get:

F s W(exp ( )) e ( ; )d .si∫ξ ξ λ λ=ω
λ

ω

A simple computation shows that:

( )( )

( )

( )

W F s s

U s s

U s s

s

s

( ; )
1

(2 )
e (exp ( ))d

1

(2 )
e Tr (exp ( )) d

Tr
1

(2 )
e (exp ( ))d

Tr
1

(2 )
e e d

Tr
1

(2 )
e d

Tr ˆ ,

s

s

s

s s

s

2
i

2
i

2
i

2
i i ˆ

2
i ˆ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

∫

∫

∫

ξ λ
π

ξ

π
ω ξ

π
ω ξ

π
ω

ω
π

ω δ λ ξ

=

=

=

=

=

= −

ω
λ

ω

λ
ρ

λ
ρ

λ ξ

λ ξ

ρ

−

−

−

−

− −

ρ

ρ





which is the formula for the tomogram Wρ that resembles
closely the classical Radon transform, equation (29), in the
affine language.
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