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Abstract
Some nonlinear generalizations of classical Radon tomography were introduced by Asorey
et al (2008 Phys. Rev. A 77 042115), where the straight lines of the standard Radon map are
replaced by quadratic curves (ellipses, hyperbolas and circles) or quadratic surfaces
(ellipsoids, hyperboloids and spheres). We consider here the quantum version of this novel
nonlinear approach and obtain, by the systematic use of the Weyl map, a tomographic
encoding approach to quantum states. Nonlinear quantum tomograms admit a simple
formulation within the framework of the star-product quantization scheme and the
reconstruction formulae of the density operators are explicitly given in a closed form, with an
explicit construction of quantizers and dequantizers. The role of symmetry groups behind the
generalized tomographic maps is analyzed in some detail. We also introduce new
generalizations of the standard singular dequantizers of the symplectic tomographic schemes,
where the Dirac delta-distributions of operator-valued arguments are replaced by smooth
window functions, giving rise to the new concept of thick quantum tomography. Applications
in quantum state measurements of photons and matter waves are discussed.

PACS numbers: 03.65.Wj, 42.30.Wb, 02.30.Uu

1. Introduction

Quantum tomography has a long and interesting history.
The first guess on a tomographic reconstruction of quantum
states dates back to 1933, when Pauli asked whether it is
possible to uniquely associate quantum states with probability
distributions, as in classical statistical mechanics [1, 2].
Pauli’s observation was, in fact, more subtle and articulate,
as he wondered whether two given position and momentum
probability distribution functions are mathematically and
physically compatible and whether it is possible to
unambiguously reconstruct the quantum state (the wave
function) from their knowledge. The answer to Pauli’s
original question is negative [3, 4], but his general idea to
associate quantum states with a set of probability distribution

functions eventually led to the basic formulation of quantum
tomography.

The tomographic representation of quantum states
is based on the Radon transform [5] of the Wigner
quasiprobability distribution function [6]. The application to
the reconstruction of quantum states was pioneered in the
1980s [7, 8] and led to the first experimental verifications
in the 1990s [9–11]. Since then, the tomographic approach
to the analysis of quantum states has become a booming
and consolidated field of investigation [12, 13], leading
to theoretical ideas and experimental proposals [14–22],
thanks also to its important applications in quantum infor-
mation [23, 24].

The original Radon transform [5] maps functions defined
on a two-dimensional (2D) plane onto functions defined
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on a 2D cylinder. The key feature is that the transform
is invertible. There exist several important generalizations
of the Radon transform (see, e.g., [25–27]). More recent
analyses have focused on symplectic transforms [28], on
the deep relationship with classical systems and classical
dynamics [29, 30], on the formalism of star-product
quantization [31] and on the study of marginals along curves
that are not straight lines [32].

The aim of this paper is to study generalizations of
the Radon transform to multidimensional phase spaces and
to frameworks based on marginals along curves or surfaces
described by quadratic equations. We shall study applications
to both classical and quantum systems. For classical systems
we use the Radon transform of the probability densities in
phase space of a classical particle and build the corresponding
tomographic map into Radon components of the initial
probability densities. In quantum systems, we introduce a pair
of operators, the density operator and its Radon transform
operator, which are related by an invertible map. In the
Wigner function approach, these formulae provide an analogy
to the Radon transform for classical probability distributions
in phase space.

This paper is organized as follows. In section 2, we review
the symplectic tomographic approach to classical mechanics.
In section 3, we provide a generalization of symplectic
tomography that is based on marginals over ellipsoids and
hyperboloids and their boundary surfaces, instead of planes
and straight lines. The case of marginals based on circles
and spheres with shifted centers provides another type of
interesting generalization. We also consider, by using a
star-product framework, the generalization of the Radon
transform in operator form for quantum systems in section 4.
Center-of-mass tomography [33], symplectic tomography and
its generalization to several quantum systems are discussed
in section 5 using symplectic group Hamiltonians. A generic
formulation of tomographic approaches that makes use of
Hamiltonians which are linear forms in generalized Lie
algebras is briefly summarized in this section. In section 6, we
consider thick symplectic quantum tomography and compare
it with the thick Radon transform in section 7. Finally, some
conclusions and perspectives are presented in section 8.

2. Symplectic quantum tomography

Let ρ̂ be a quantum state (ρ̂ = ρ̂†, ρ̂ > 0). The quantum
Radon transform (homodyne tomogram) is given by

Rρ̂(X, ϕ) = Tr ρ̂δ(X Î− q̂ cos ϕ − p̂ sin ϕ), (1)

with ϕ ∈ [0, 2π ]. In terms of the Wigner function

W (p, q) =

∫ 〈
q−

ξ

2

∣∣∣ρ̂∣∣∣q +
ξ

2

〉
eipξ dξ,∫

W (p, q) dp dq = 2π,

(2)

the above expression reads

Rρ̂(X, ϕ) =
1

2π

∫
dp dq W (p, q)

× δ (X − q cos ϕ − p sin ϕ) . (3)

The quantum symplectic [34] (or M2 [35]) transform is a
generalization of the quantum Radon transform (1) and reads

Wρ̂(X, µ, ν) = 〈δ(X Î− µq̂ − ν p̂)〉ρ

= Tr ρ̂δ(X Î− µq̂ − ν p̂), (4)

where µ and ν are real parameters. The information content
of the two formulations is identical and is expressed by the
relation

Wρ̂(X, r cos ϕ, r sin ϕ) =
1

r
Rρ̂

(
X

r
, ϕ

)
, (5)

valid for any r > 0. Equation (5) is an easy consequence of
the fact that the Dirac distribution is positive homogeneous
of degree −1. The two formulations (1) and (4) may differ
in practice (the latter being easier to invert [35]) and cease to
be equivalent when the Dirac delta-function is replaced by a
finite window function [36]. In this paper, we shall focus on
the symplectic version (4).

Equation (4) can be rewritten as the ‘classical’ tomogram
of the Wigner function

Wρ̂(X, µ, ν) =
1

2π

∫
W (p, q) δ (X − µq − νp) dp dq,

(6)
whose inverse transform reads

W (p, q) =
1

2π

∫
Wρ̂(X, µ, ν) ei(X−µq−νp) dX dµ dν, (7)

or, in terms of the density matrix,

ρ̂ =
1

2π

∫
Wρ̂(X, µ, ν) ei(X Î−µq̂−ν p̂) dX dµ dν. (8)

For completeness and for future convenience, we note that
the inversion formula of the Radon transform (1) is easily
obtained from equations (5) and (8) and reads

ρ̂ =
1

2π

∫
dX

∫
∞

0
dr
∫ 2π

0
dϕ Rρ̂(X, ϕ)

× r eir(X Î−q̂ cos ϕ− p̂ sin ϕ). (9)

The generalization of (6) to the multimode case can be
achieved in several ways. Let us consider the case of two
modes for simplicity. One can introduce either the ordinary
tomogram

Wρ̂( EX , Eµ, Eν) = 〈δ(X1Î−µ1q̂1−ν1 p̂1) δ(X2Î−µ2q̂2−ν2 p̂2)〉,

(10)

where EX = (X1, X2), Eµ = (µ1, µ2) and Eν = (ν1, ν2), or
alternatively, the ‘center-of-mass’ tomogram

Wcm(X, Eµ, Eν) = 〈δ(X Î− µ1q̂1 − ν1 p̂1 − µ2q̂2 − ν2 p̂2)〉.

(11)
The Weyl map (2) again provides the possibility of
expressing (10) and (11) as ‘classical’ tomograms

Wρ̂( EX , Eµ, Eν) =
1

(2π)2

∫
d Ep d Eq W ( Ep, Eq)

× δ (X1−µ1q1−ν1 p1) δ (X2−µ2q2−ν2 p2) ,

(12)

2
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Wcm(X, Eµ, Eν) =
1

(2π)2

∫
d Ep d Eq W ( Ep, Eq)

× δ (X − µ1q1 − ν1 p1 − µ2q2 − ν2 p2) ,

(13)

where W ( Ep, Eq) is the Wigner function of the two-mode
system, normalized to (2π)2.

The inverse transform reads

W ( Ep, Eq) =

∫
Wcm(X, Eµ, Eν) ei(X− Eµ· Eq−Eν· Ep) dX d Eµ d Eν

(2π)2
(14)

for the center-of-mass tomogram and

W ( Ep, Eq) =

∫
Wρ̂( EX , Eµ, Eν) ei(X1+X2− Eµ· Eq−Eν· Ep) d EX d Eµ d Eν

(2π)2
(15)

for the ordinary symplectic tomogram. The inversion
formulae for the density matrix are

ρ̂ =

∫
Wρ̂( EX , Eµ, Eν) ei(X1 Î+X2 Î− Eµ· Êq−Eν· Êp) d EX d Eµ d Eν

(2π)2
, (16)

for the symplectic case and

ρ̂ =

∫
Wcm(X, Eµ, Eν) ei(X Î− Eµ· Êq−Eν· Êp) dX d Eµ d Eν

(2π)2
(17)

for the center-of-mass tomography. An advantage of the
symplectic tomogram is that it permits splitting into
subsystems for separable states, which is not possible in
the center-of-mass tomogram. This property might be very
relevant for the fast reconstruction of non-entangled states.

In the case of M subsystems with their own centers of
mass, tomography is defined by

Wcm(X1, Eµ1, Eν1, X2, Eµ2, Eν2, . . . , X M , EµM , EνM)

=

〈
M∏

i=1

δ(X i Î− Eµi · Êq i − Eνi · Êpi )

〉
, (18)

where Eµi = (µi1, µi2, . . . , µi Ni ), Eνi = (νi1, νi2, . . . , νi Ni ),
with i = 1, 2, . . . , M and

M∑
i=1

Ni = N . (19)

The inversion formula is given by

ρ̂ =

∫
Wcm(X1, Eµ1, Eν1, X2, Eµ2, Eν2, . . . , X M , EµM , EνM)

× ei
∑

j (X j Î− Eµ j · Êq j −Eν j · Êp j )
d EX d Eµ d Eν

(2π)M
.

The symplectic tomogram can also be constructed in the
case of multimodal systems.

3. Quadratic tomograms

One of the main objectives of this paper is to study
generalizations of the quantum Radon transform to marginals

along curves or surfaces described by quadratic, rather than
linear, equations. The solution to the classical problem was
obtained in [32]. Given an M × M symmetric operator B and
two M-dimensional vectors Ex and Eα, let

X = ( Ex − Eα) · B( Ex − Eα), (20)

where Ex · Ey denotes the scalar product of vectors Ex and Ey. The
classical tomogram of a function f ( Ex) reads

ω f (X, Eα) =

∫
Rm

f ( Ex) δ (X − ( Ex − Eα) · B( Ex − Eα)) d Ex .

(21)

Observe that the δ-function is supported on the quadrics
(ellipsoids, hyperboloids, etc, that can also have degeneracies)
defined by equation (20). The inverse map is

f ( Ex) =
|det B|

πm

∫
Rm+1

dX d Eα ω f (X, Eα)

× ei(X−( Ex− Eα)·B( Ex− Eα)). (22)

The solution to the quantum problem is similar.
With a slight abuse of terminology, we shall speak of
multidimensional phase spaces and quadratic ‘Hamiltonians’
of the type

Ĥ =
1
2

ÊQ · B ÊQ + EC · ÊQ, (23)

where

Q̂ j = p̂ j , Q̂N+ j = q̂ j ( j = 1, . . . , N ) (24)

are the momentum and position operators, and EC and B
denote a 2N -dimensional vector and a 2N × 2N symmetric
matrix, which parameterize the different types of quadratic
Hamiltonian. Observe that since we are working in a
symplectic framework, M → 2N .

The quantum counterpart of the classical tomogram (21)
reads

W(X, Eµ, Eν) = 〈δ(X Î− Ĥ Eµ Eν)〉, (25)

where

Ĥ Eµ Eν =
1
2 ( ÊQ − Er) · B ( ÊQ − Er) + EC · ( ÊQ − Er) (26)

and Er = ( Eµ, Eν) is a 2N -dimensional vector. The coordinate
X plays the role of ‘energy’. The Hamiltonian can be
degenerate, depending on the type of eigenvalues of the
2N × 2N symmetric matrix B [36]. The parameters Eµ and
Eν have the meaning of shift parameters of the centers of the
operatorial quadratic curves (surfaces).

From the Hamiltonian (26), one can derive a quantum
tomographic map similar to that obtained in the classical case,
by using the Wigner function

W(X, Eµ, Eν) =

∫
d Ep d Eq

(2π)N
δ
(
X −H Eµ Eν

)
W ( Eq, Ep), (27)

where the HamiltonianH Eµ Eν is given by (26) with the operators
Êq and Êp replaced by c-numbers Eq and Ep. Since equation (27)
is equivalent to equation (21), the reconstruction function

3
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follows directly from equation (22) with the replacement
B →

1
2 B, namely

ρ̂ =

∫
W(X, Eµ, Eν) ei(X Î−Ĥ Eµ Eν ) |det B|

dXd Eµ d Eν

(2π)N
. (28)

The generalization to multipartite systems is
straightforward. If we have M subsystems we can define the
multipartite tomogram

Wcm( EX , Eµ, Eν) =

∫
W ( Eq, Ep)

M∏
j=1

δ(X j Î− Ĥ Eµ j Eν j )
d Ep j d Eq j

(2π)N j
,

EX = (X1, X2, . . . , X M), Eµ = ( Eµ j ), Eν = ( Eν j ),

(29)

whose inverse transform is

ρ̂ =

∫
Wcm( EX , Eµ, Eν)

M∏
j=1

e
i(X j Î−Ĥ Eµ j Eν

j
)

× |det B j |
dX j d Eµ j d Eν j

(2π)N j
. (30)

4. Star-product framework

It is interesting to see how the transform with quadratic
curves in phase space can be written in the form of a
star-product quantization [31]. Any star-product scheme is
aimed at constructing a bijective map of operators Â acting
on a Hilbert space H and the space of functions f A defined
on a manifold M. The map can be constructed in terms of
two operator-valued functions D̂ and Û defined on M and
called ‘quantizers’ and ‘dequantizers’, respectively. These two
functions satisfy the identity

Tr(D̂(x)Û (y)) = δ(x − y) (31)

for every x, y ∈M. The map is then defined by the formula

f A(x) = Tr( Â Û (x)), (32)

and the inverse map is defined by

Â =

∫
f A(x)D̂(x) dx . (33)

The star product is defined on the space of functions f A by

f A ? fB = f AB . (34)

The kernel of this associative star product is then given by

K (x1, x2, x3) = Tr(D̂(x1)D̂(x2)Û (x3)) (35)

and satisfies

f A ? fB(x) =

∫
f A(x1) f A(x2) K (x1, x2, x) dx1dx2. (36)

The key observation is that the tomogram can be
interpreted in terms of a dequantizer

Û (X, Eµ, Eν) = δ(X Î− Ĥ Eµ Eν) (37)

and a quantizer

D̂(X, Eµ, Eν) =
|det B|

(2π)N
ei(X Î−Ĥ Eµ Eν ). (38)

Thus, for an arbitrary observable Â, one can introduce the
quadratic tomogram

WA(X, Eµ, Eν) = Tr Â δ(X Î− Ĥ Eµ Eν). (39)

Also one can reconstruct the observable operator from its
quadratic tomogram

Â =

∫
WA(X, Eµ, Eν) D̂(X, Eµ, Eν) dX d Eµ d Eν. (40)

There also exist tomograms based on shifts of quadratic
curves in phase space, but as in equation (4) for symplectic
tomograms, we use instead the rescaled position and
momentum operators.

One can combine both types of tomograms, derived by
shifts and rescaling of variables, obtaining a new class of
tomograms, which are the quantum version of the classical
tomograms defined by [32]

ω f (X, Eµ, Eν)=

∫
R2n

δ (X − Eµ · Eq − ν( Eq, Ep)) f ( Eq, Ep) d Eq d Ep,

(41)

where Ep and Eq are vectors in Rn and

ν( Eq, Ep) =

n∑
j=1

ν j q j p j . (42)

This map corresponds to a deformation of the standard
multidimensional Radon transform by means of the following
diffeomorphism of R2n

\
⋃

j {( Eq, Ep) : q j = 0}:

(qi , p j ) 7→ (xi , y j ) =
(
qi , q j p j

)
, (43)

whose Jacobian is

J ( Eq, Ep) =

∣∣∣∣ ∂( Ex, Ey)

∂( Eq, Ep)

∣∣∣∣= n∏
j=1

|q j |. (44)

The inverse map is given by

f ( Eq, Ep) =

∫
R2n+1

dX d Eµ d Eν

(2π)2n
ω f (X, Eµ, Eν)

×

n∏
j=1

|q j | ei(X− Eµ· Eq−ν( Eq, Ep)). (45)

This corresponds to the higher-dimensional generalization of
the Bertrand–Bertrand tomography [7].

The quantum extension is straightforward. One
introduces the Hamiltonian

Ĥξν( Êq, Êp) =

N∑
i=1

ξi q̂ i +
1

2

N∑
j=1

ν j (q̂ j p̂ j + p̂ j q̂ j ). (46)

4
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The dequantizer operator

Û (X, Eξ, Eν) = δ(X Î− Ĥ Eξ Eν( Êq, Êp)) (47)

yields the quantum tomogram

W(X, Eξ, Eν) = Tr ρ̂ δ(X Î− Ĥ Eξ Eν( Êq, Êp)), (48)

and corresponds to the quantizer

D̂(X, Eξ, Eν) =

N∏
j=1

|q̂ j | ei(X Î−Ĥ Eξ Eν ( Êq, Êp)). (49)

This permits us to recover the quantum state from its
tomogram. The modulus of the operator is defined by the Weyl
quantization of the symbol |q j |.

5. Group Hamiltonians

The applications considered so far involve the position and
momentum coordinates. In the linear and quadratic cases, the
Hamiltonians from which we constructed the quantizers and
dequantizers can be written in the form

Ĥ gα
=

∑
α

(go)α L̂α, (50)

where L̂α are generators of Lie groups. In the examples
considered in this paper, they belong to representations of
the inhomogeneous Lie group ISp(2N ,R) and its subgroups.
The group ISp(2N ,R) is defined as the group of affine
transformations of R2N

≡ T ∗RN which preserve its natural
symplectic form. It is the semi-direct product of the translation
group and the linear symplectic group. The reason for this
choice is because this group acts on the Heisenberg–Weyl
group as a group of automorphisms. Within this framework,
the delta-function is expressed as

δ

(
X Î−

∑
α

(go)α L̂α

)
=

1

2π

∫
dt eit (X Î−

∑
α(go)α L̂α) (51)

and
Û (g(t)) = e−it (

∑
α(go)α L̂α) (52)

is the operator representation of the Lie group.
Thus, the tomogram can be rewritten in a form that only

depends on group element parameters (go)α and the Radon
variable X :

W(X, (g0)α) =

〈
δ

(
X Î−

∑
α

(go)α L̂α

)〉

=
1

2π
Tr
∫

dt ρ̂ eit X Û (g(t))

=
1

2π

∫
dt eit X Tr(ρ̂ Û (g(t))). (53)

Therefore, the tomogram is related to the orbit of the group
and the Fourier integral of the trace of the orbit in the group
representation. This group-theoretical representation permits
the extension to more general cases [37].

6. Thick quantum tomography

We now turn our attention to the thick tomographic map [36],
which is a more realistic approach for practical applications,
because instead of marginals defined over lines, as in the
classical Radon transform [5], or quadrics as in the quadratic
generalized Radon transform [30, 32], it involves a thick
window function 4. This is convoluted with the tomographic
map and concentrates the marginals around some given
background curves (that can be lines or quadrics), without
resorting to a singular delta function. For example, if the
weight function 4 is a step function, it defines marginals along
thick lines or thick quadratic curves. In the quantum case, this
amounts to replacing in the definition of the dequantizer Û (x)

the Dirac delta-function by the weight function 4,

Û (X, (g0)α) = 4

(
X Î−

∑
α

(go)α L̂α

)
. (54)

For the symplectic quantum tomography, one has the
dequantizer

Û (X, µ, ν) = 4(X Î− µq̂ − ν p̂). (55)

The new tomogram reads

W4(X, µ, ν) = Tr ρ̂ 4(X Î− µq̂ − ν p̂). (56)

Using the Weyl map one obtains a tomogram for the Wigner
function

W4(X, µ, ν) =
1

2π

∫
W (p, q) 4 (X − µq − νp) dp dq.

(57)
An interesting property of the above formula (57) is that it
can be inverted in complete analogy with the classical thick
tomography introduced in [36]. The thick tomogram can be
expressed in terms of standard symplectic tomograms via a
convolution formula

W4(X, µ, ν) =

∫
W(Y, µ, ν) 4 (X − Y ) dY, (58)

which leads to the explicit construction of the inverse
transform. Indeed, the inverse transform is obtained by means
of a Fourier transform of the convolution integral

W (p, q) =
N4

2π

∫
W4(X, µ, ν) ei(X−µq−νp) dX dµ dν,

(59)
where

N4 =
1

4̃(−1)
, 4̃(−1) =

∫
4(z) eiz dz. (60)

In the invariant form, the state reconstruction is achieved by

ρ̂ =
N4

2π

∫
W4(X, µ, ν) ei(X Î−µq̂−ν p̂) dX dµ dν.

The quantizer operator in thick symplectic tomography is

D̂(X, µ, ν) =
N4

2π
ei(X Î−µq̂−ν p̂). (61)

5
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Let us now consider a particular example of a thick tomogram
to illustrate the potentialities of the new method. If the weight
function is a Gaussian function

4(z) =
1

√
2πσ 2

e−
z2

2σ2 , (62)

which tends to the delta distribution in the σ → 0 limit,

lim
σ→0

4(z) = δ(z), (63)

the thick tomogram of the coherent states |α〉〈α| reads

Wα
σ (X, µ, ν) =

1√
π(µ2 + ν2 + 2σ 2)

e
−

(X−X̄)2

µ2+ν2+2σ2 , (64)

where
X̄ =

√
2 µ Re α +

√
2 ν Im α. (65)

For the vacuum state |0〉〈0|, the tomogram reads

Wvac
σ (X, µ, ν) =

1√
π(µ2 + ν2 + 2σ 2)

e
−

X2

µ2+ν2+2σ2 . (66)

The quantizer reads

D̂σ (X, µ, ν) =
1

2π
e

σ2

2 +i(X Î−µq̂−ν p̂) (67)

and the dequantizer is given by

Û σ (X, µ, ν) =
1

√
2πσ 2

e−
(X Î−µq̂−ν p̂)2

2σ2 . (68)

One interesting property that is preserved by the smoothing
of the tomogram is that the marginals W4(X, µ, ν) are also
probability distributions. In the limit σ → 0, 4(z) → δ(z),
4̃(−1) = 1, N4 = 1.

In the case of multimode systems with quadratic
Hamiltonians, the dequantizer and the quantizer of thick
tomography with a Gaussian weight function 4 become

Û σ (X, Eµ, Eν) = 4(XI− 1
2 ( ÊQ − Er) · B( ÊQ − Er)) (69)

and

D̂σ (X, Eµ, Eν) =
|det B|

(2π)N+14̃(−1)
ei(XI− 1

2 ( ÊQ−Er)·B( ÊQ−Er)), (70)

respectively. Thus, the quantum thick tomogram of a
multimode state with weight function 4 reads

W4(X, Eµ, Eν) =

∫
d Ep d Eq

(2π)N
W ( Eq, Ep)

× 4(X −
1
2 ( EQ − Er) · B( EQ − Er)), (71)

in terms of the Wigner functions of the state, and the inverse
formula

W ( Eq, Ep) =
|det B|

(2π)N+14̃(−1)

∫
dX d Eµ d EνW4(X, Eµ, Eν)

× ei(X−
1
2 ( EQ−Er)·B( EQ−Er)) (72)

permits us to reconstruct the Wigner function from its
tomograms.

The proof of the inverse formula follows the same steps
of the case of linear symplectic tomograms. Indeed, if we
plug (71) into the right-hand side of (72), we obtain

|det B|

(2π)N+14̃(−1)

∫
dX d Eµ d Eν

∫
d Ep ′ d Eq ′

(2π)N
W ( Eq ′, Ep ′)

× 4

(
X −

1

2
( EQ′

− Er) · B( EQ′
− Er)

)
ei(X−

1
2 ( EQ−Er)·B( EQ−Er))

=
|det B|

(2π)N+14̃(−1)

∫
dX dY d Eµ d Eν

∫
d Ep ′ d Eq ′

(2π)N
W ( Eq ′, Ep ′)

× δ(Y −
1
2 ( EQ′

− Er) · B( EQ′
− Er))4 ((X − Y )I)

× ei(Y−
1
2 ( EQ−Er)·B( EQ−Er))ei(X−Y )

=
|det B|

2π 4̃(−1)

∫
dZ d Ep ′ d Eq ′ W ( Eq ′, Ep ′)

∫
d Eµ d Eν

(2π)N
4 (Z) eiZ

× ei(Er ·B( EQ− EQ′)− 1
2

EQ·B EQ+ 1
2

EQ′
·B EQ′)

=
1

4̃(−1)
W ( Eq, Ep)

∫
dZ

2π
4(Z) eiZ

= W ( Eq, Ep). (73)

Let us consider the example of a quadratic thick
tomogram governed by a Hamiltonian with

B =

(
I2, 0
0, I2

)
(74)

and the Gaussian weight function 4σ for a system with one
degree of freedom. In that case, one might think that the
tomogram is centered on a quadratic curve

X =
1
2 (p − ν)2 + 1

2 (q − µ)2. (75)

The tomogram is given by

Wσ (X, µ, ν) =
1

2π
√

2πσ 2

∫
dp dq W (q, p)

× e−
(X−

1
2 (p−ν)2−

1
2 (q−µ)2)

2

2σ2 (76)

in terms of the Wigner function, and the inverse transform

W (q, p) =
e

σ2

2

2π

∫
dX dµ dνWσ (X, µ, ν)

× ei(X−
1
2 (p−ν)2

−
1
2 (q−µ)2) (77)

allows a reconstruction of the Wigner function from its thick
quadratic tomograms.

7. Comparison with the thick Radon transform

A comparison with the quantum Radon transform (1) is useful
and clarifies the merits of the approach taken in this paper.
Let us consider the thick version of (1), with a window
function 4:

R4(X, ϕ) = Tr ρ̂4(X Î− q̂ cos ϕ − p̂ sin ϕ). (78)
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Now, in general, relation (5) (a consequence of the positive
homogeneity of degree −1 of the Dirac distribution) no
longer holds for R4 and W4. As a consequence, one has
to deconvolve R4—whenever this is possible—in order to
obtain Rρ̂ and thus ρ̂. Since

R4(X, ϕ) =

∫
4(X − Y )Rρ̂(Y, ϕ) dY, (79)

one obtains∫
dX R4(X, ϕ) e−ik X

= 4̃(k)

∫
dX Rρ̂(X, ϕ) e−ik X . (80)

Equation (80) can be inverted for any Rρ̂ if and only if
4̃(k) 6= 0 for all k. In this case, from (80) and (9) one obtains

ρ̂ =
1

2π

∫
dX

∫
∞

0
dr
∫ 2π

0
dϕ
R4(X, ϕ)

4̃(−r)

× r eir(X Î−q̂ cos ϕ− p̂ sin ϕ). (81)

Therefore, in contrast with the thick symplectic transform,
the thick Radon transform cannot be inverted for arbitrary
window functions. Moreover, even when the inversion is
possible, one needs to have a complete knowledge of the
window function in order to deconvolve the thick homodyne
tomogram and perform its inversion (81).

8. Conclusions

There are many possible interesting applications of the
quantum tomograms introduced in this paper by using
quadrics and window functions in phase space. The
measurements of variables that are quadratic forms of
positions and momenta are equivalent to measuring the energy
of vibrations with changing parameters, such as minima of
potential energy, elastic forces and so on. This procedure can
be used to measure the state ρ̂ of trapped ions by varying the
parameters of the trapping potential.

Homodyne detection, by using nonlinear crystals as
beam-splitters, also creates quadratic forms of the photon
quadrature components which, in principle, can be measured
by varying the parameters of the quadratic forms. Thus,
tomography with the generalized quantized version of the
Radon transform provides new possibilities to measure
quantum states.

From a formal viewpoint, the new tomographic maps
and their inverse can be formulated within the framework
of the star-product scheme, with quantizers and dequantizers
for multidimensional systems. Some of the constructions
involve generic quadratic forms of the different position
and momentum operators. The inhomogeneous symplectic
group of the corresponding multidimensional phase spaces
and its subgroups play a significant role in the formalism. The
new quantum tomograms can be considered as the quantum
version of the generalized classical tomograms introduced
in our previous work [32] and involve quadratic surfaces on
phase spaces. The correspondence between both approaches
is established by means of the Weyl map.

In quantum optics, the new nonlinear Radon transforms
can be easily extended to the quantum domain by using

the Weyl–Wigner map. The results of this paper show that
the reconstruction of the Wigner function using optical or
symplectic tomography based on the straight-line Radon
transform can be extended to situations in which the marginals
in phase space are measured for curved hyperbolas or ellipses.
In particular, parabolic tomography could be implemented
with the recently observed accelerated Airy beams [38].

Finally, the other generalization introduced in this paper,
named ‘thick’ quantum tomography, entails that the effect
of a non-singular window function not only smoothes
the tomograms, but in fact matches better all practical
applications, where thick tomograms arise in a natural way.
The striking fact we pointed out in this work is that the
reconstruction procedure in this case is almost independent of
the window functions, with an enormous advantage due to the
fact that for most experimental devices the window function
is not completely known.
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