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Abstract
Husimi Q-functions are the only functions from the class of Cohen quasi-distributions on
phase space that after scaling transformation (q, p) → (λq, λp) remain in the same class
when the modulus of the scaling parameter is smaller than unity and so, in this case, describe a
physical state. We found the Wigner functions and symplectic tomograms of such states. We
applied the obtained general results to the Fock states of the harmonic oscillator.

PACS numbers: 03.65.Bz, 42.50.Dv

1. Introduction

Quantum mechanics in an inherently statistical theory and in
it, in general, only the probabilities of experimental outcomes
can be predicted. In this respect, it is similar to classical
statistical mechanics. The main object of investigation in
the latter is the distribution function ρ(q, p). This quantity
represents the probability density that the system considered
is in the state that is characterized by the parameters (q, p).
With the help of it various average values can be calculated.
It is defined on the phase space and its arguments represent
the coordinate and the momentum of the physical system, and
it is also assumed that they can be measured simultaneously
with any required accuracy.

As quantum mechanics is also a statistical theory, from
the very beginning of its history, attempts have been made
to describe quantum states and supply a representation of
quantum mechanics that in some sense would be similar to
the formulation of classical statistical mechanics.

The oldest phase space formulation of quantum
mechanics was introduced by Wigner in 1932. In it
every quantum mechanical state was represented by the
corresponding function in phase space—its Wigner function
W (q, p) [1]. Although it has exact marginal distributions and,

in calculations of quantum mechanical average values, plays a
role analogous to that of the classical distribution function, it
cannot be interpreted as a probability distribution because in
the general case it necessarily assumes negative values. Due
to this it is a quasi-distribution. Its main features have been
described in the review articles [2, 3].

The first positive function on phase space to be
introduced, which also completely describes the quantum
state, was the Husimi–Kano Q-function [4, 5] (following
accepted practice, hereafter we call it simply the Husimi
function). Also well known is the Glauber–Sudarshan
P-function [6, 7].

In the papers [8], quantum tomography was introduced.
Namely, the function w(X, µ, ν) was introduced, which is
in one-to-one correspondence with a Wigner function. It
may be interpreted as a quantum mechanical probability
density of the quantity X = µq + νp. The quantity X may be
interpreted as a coordinate in a rotated system of coordinates
in phase space (Q, P). The function w(X, µ, ν) supplies a
complete quantum mechanical description of a quantum state
and, furthermore, is a real quantum mechanical probability
distribution. It is known as a symplectic tomogram and is
described in great detail in [9].
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In this paper, we analyze various relations, differential
and integral, between Wigner functions, Husimi functions and
symplectic tomograms. We also analyze the behavior of the
Husimi functions under scaling transformation

(q, p) → (λq, λp). (1)

After such a transformation and renormalization the Husimi
Q(q, p) function becomes λ2 Q(λq, λp). In [10] the proof
is given that the so obtained function is again a Husimi
function of some physical state if λ is a real parameter and
|λ|6 1. The above transformation arises in a natural way in
a number of physical problems and especially in the problem
of the most quiet phase-insensitive amplification of a quantum
state [11]. In this case, the parameter λ is equal to the inverse
value of the coefficient of amplification G = λ−1. In this way,
the scaling transformation of Husimi functions is not only a
mathematical procedure but also has a clear physical meaning,
as an amplification of a quantum state. As Husimi functions
in the class of Cohen functions are the only functions that
after scaling remain physical states, it is interesting to find
how the Wigner functions and tomograms behave in such an
amplification of a quantum state. We also analyze this problem
for the general case and apply the obtained results to the Fock
states.

2. Relations between Husimi functions of quantum
states and the corresponding Wigner functions and
symplectic tomograms

The Husimi function of the quantum state described by a
density operator ρ̂ is defined as the average value of this
operator in the coherent state basis 〈x |α〉, so that we can
write [4, 5]

Q(α, α∗) =
1

π

∫
〈α|x〉ρ(x, y)〈y|α〉 dx dy. (2)

Here α = αr + iαi is a complex number, ρ(x, y) is a density
matrix in the coordinate representation, while a coherent state
in the same basis 〈x |α〉 may be written in the form

n〈x |α〉 =

(
1

π

)1/4

exp

[
−

1

2
(x −

√
2α)2 + iααi

]
, (3)

where α = (q + ip)/
√

2 and h̄ = 1.
In this paper, we analyze the behavior of Husimi

functions under scaling transformations and the relations of
the scaled functions with Wigner functions and symplectic
tomograms of corresponding quantum states.

The Wigner function W (q, p) may be expressed through
the density matrix ρ̂ in the form

W (q, p) =

∫
ρ

(
q +

u

2
, q −

u

2

)
e−ipu du. (4)

Here ρ(x, x ′) is a density matrix in coordinate representation.
The Husimi function is related to the Wigner function

W (q, p) through the following differential relation [12, 13]:

Q(q, p) = exp

(
1

4

∂2

∂q2
+

1

4

∂2

∂p2

)
W (q, p). (5)

The expression (5) may be inverted so that one can express
the Wigner function through a Husimi function [10] in the
following way:

W (q, p) = exp

(
−

1

4

∂2

∂q2
−

1

4

∂2

∂p2

)
Q(q, p). (6)

Using Fourier transforms one can obtain the integral
analogues of the differential relations (5) [2, 10]:

Q(q, p) =
1

π

∫
exp

(
−(q − q ′)2

− (p − p′)2
)
W (q ′, p′) dq ′ dp′.

(7)
In [14] the density matrix is expressed through the Husimi
function in the form

ρ(x, x ′) = exp

[
1

2
(x − x ′)2

] ∞∑
n=0

(−1)n

2nn!

∫
dq dpH2n

×

[(
q −

1

2
(x + x ′)2

)]
K (q, p; x, x ′)Q(q, p).

(8)

Here

K (q, p; x, x ′) =
1

√
π

exp

[
−

(
q −

1

2
(x + x ′)

)2

− (x − x ′)2 + ip(x − x ′)

]
. (9)

A simpler expression for the density matrix was given in [10]
as

ρ(x, y)

=
1

2

√
π exp

[
1

2
(x2 + y2)

] ∫
Q

(
i

2
(p1 − p2),

1

2
(p1 + p2)

)
× exp

(
−

1

4
(p1 − p2)

2
− ip1x + ip2 y

)
dp1 dp2. (10)

The inverse relation, namely the expression for the Husimi
function through the density matrix, may be obtained using
the formulae (5) and (7) and the definition of the Wigner
function (4).

The symplectic tomograms were introduced in the
papers [8]. They can be represented with the help of the
Wigner function (h̄ = 1):

w(X, µ, ν) =
1

(2π)2

∫
dk dq dp W (q, p) e−ik(X−µq−νp).

(11)

The inverse transformations read

W (q, p) =
1

2π

∫
dX dµ dν w(X, µ, ν) exp(−i(µq + νp− X)).

(12)

Symplectic tomograms may be also defined through the
density matrix of a state in the form ρ̂ [15]

w(X, µ, ν) = 〈X, µ, ν|ρ̂|X, µ, ν〉. (13)

2
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Here |X, µ, ν〉 are the eigenstates of the Hermitian operator
X̂µν , corresponding to the eigenvalue X , while µ and ν are
real parameters.

On the other hand, we have the formula (7), expressing
the Husimi function through the Wigner function. Inserting
the expression (12) into the formula (7), we obtain the
expression for the Husimi function through a tomogram

Q(q, p) =
1

2π

∫
dX dµ dν w(X, µ, ν)e−(1/4)µ2

−(1/4)ν2

× exp(−i(µq + νp − X)). (14)

Using the expression (6) for the Wigner function and (11), one
can express the tomogram as

w(X, µ, ν) =
1

(2π)2

∫
dk dq dp exp

(
−

1

4

∂2

∂q2
−

1

4

∂2

∂p2

)
× Q(q, p) e−ik(X−µq−νp)

=
1

(2π)2

∫
dk dq dp ek2[(1/4)µ2+(1/4)ν2]

× Q(q, p) e−ik(X−µq−νp). (15)

3. Scaling-transformed Husimi functions and the
corresponding Wigner functions and tomograms

Let us consider the following transformation of the Husimi
function:

Qλ(q, p) = λ2 Q(λq, λp). (16)

As we already mentioned, it arises in a natural way in several
physical situations, and what is especially interesting is that,
in [11], with the help of this transformation the amplification
of a quantum state was described. It was shown there that
in the case of the most quiet phase insensitive amplification,
the Husimi functions of input and output quantum states are
related through the relation

Qout(α) =
1

G2
Qin

( α

G2

)
, (17)

where G is the coefficient of amplification. It was shown
in [16] that, if λ2 6 1 and Q(q, p) is a Husimi function, then
the function Qλ(q, p) is also a Husimi function of some
quantum state. It is also well known that the analogous
transformation of the Wigner function, namely the
transformation of the form

W̃ λ(q, p) = λ2W (λq, λp), (18)

is not positive definite and so does not lead from a Wigner
function to a Wigner function again. In [16] this was shown
for the case of the first excited state of the harmonic oscillator.
In (18) this transformation was applied to the Wigner function
of the mentioned state.

However, we can construct the Wigner function that as
a function describing the physical state corresponds to the
Husimi function generated by transformation (1). To this
end, as the first step from the considered Wigner function
using the formulae (5) and (7) the corresponding Husimi
function should be constructed. Then to this Husimi function
the transformation (1) should be applied and then for the so

obtained Husimi function the corresponding Wigner function
using the formula (6) should be found. Such a procedure leads
from a Wigner function again to a Wigner function. Let us find
its explicit form.

The Wigner function can be expressed through the
Husimi function using the relation (6). For the scaled Husimi
function (16), this relation takes the form

W λ(q, p) = exp

(
−

1

4

∂2

∂q2
−

1

4

∂2

∂p2

)
λ2 Q(λq, λp). (19)

The expression (19) may be represented in the form

W λ(q, p) = λ2 exp

(
−

1

4

∂2

∂q2
−

1

4

∂2

∂p2
+

1

4λ2

∂2

∂q2
+

1

4λ2

∂2

∂p2

)
× W (λq, λp). (20)

The formula (20) shows the method of transformation of the
Wigner function in the case when the corresponding Husimi
function is transformed according to rule (16).

The obtained result (20) being in a differential form is
an analogue of corresponding relations (5) and (6). For the
Wigner functions W (q, p), W λ(q, p) it is also possible to find
the integral relation that connects them, which is analogous to
equation (7). To this end one can use the Fourier transform of
the function W (λq, λp).

W (u, v) =

∫
dq ′ dp′ eiuq ′ + ivp′

W (λq ′, λp′). (21)

Inverting this Fourier transform, one obtains the following
identity:

W (λq, λp)

=
1

2π

∫
dq ′′ dp′′ dq ′ dp′ ei(q ′

−q)p′′+i(p′
−p)q ′′

W (λq ′, λp′).

(22)

Now, to the obtained expression (22) the following operator
should be applied:

λ2 exp

(
−

1

4

(
1 −

1

λ2

)
∂2

∂q2
−

1

4

(
1 −

1

λ2

)
∂2

∂p2

)
.

Using the formula (22), we obtain

W λ(q, p) =
λ2

(2π)2

∫
dq ′′ dp′′ dq ′ dp′ exp

(
1

4

(
1 −

1

λ2

)
(p′′)2

+
1

4

(
1 −

1

λ2

)
(q ′′)2

)
ei(q−q ′)p′′+i(p−p′)q ′′

W (λq ′, λp′). (23)

The final result is

W λ(q, p) =
1

π

λ2

1 − λ2

∫
dq ′′ dp′′

× exp

[
−

(λq − q ′′)2

(1 − λ2)
−

(λp − p′′)2

(1 − λ2)

]
W (q ′′, p′′). (24)

The expression (24) gives the integral relation between
the Wigner function W (q, p), which corresponds to
the Husimi function Q(q, p), and the Wigner function

3
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W λ(q, p), which corresponds to the scaled Husimi function
Qλ(q, p) = λ2 Q(λq, λp).

Let us explain now what happens to the initial tomogram
when a Husimi function is scale transformed according
to (16).

As we already found, the tomogram may be expressed
through the Husimi function using the formula (15).
Assuming that in this formula already transformed functions
are present, we will write it in the form

wλ(X, µ, ν) =
1

(2π)2

∫
dk dq dp ek2[(1/4)µ2+(1/4)ν2]

× Qλ(q, p) e−ik(X−µq−νp). (25)

Inserting into the formula (25) the expression (16) for the
transformed Husimi function and using the formula (14),
which relates the Husimi function through the tomogram, the
following expression relating the transformed tomogram wλ

with the initial one w may be obtained:

wλ(X, µ, ν) =
λ2

2π

∫
dY dk w

(
Y,

kµ

λ
,

kν

λ

)
× exp

[
k2

4
µ2

(
1 −

1

λ2

)
+

k2

4
µ2

(
1 −

1

λ2

)]
ei(Y−k X).

(26)

4. The harmonic oscillator

We will now, as an example, apply the general obtained results
to the case of the harmonic oscillator. We wish to find how
the Fock state of the harmonic oscillator is transformed when
the Husimi function of the initial state is scale transformed
according to (16). To this end, let us consider the following
concrete operator:

ρ̂N =
λ2N+2

N !

∞∑
k=0

(N + k)!

k!
(1 − λ2)k

|N + k〉〈N + k|, λ2 < 1.

(27)

The operator (27) may evidently be interpreted as the
density matrix of some quantum state. From the form of the
expression (27), it is evident that the described state is a mixed
state that consists of a linear combination of the pure states
|N + k〉, k = 0, 1, 2, . . . ,∞. Each of these pure states |N + k〉

is present in the mixed state with the probability

cN
k =

λ2N+2(N + k)!

N !k!
(1 − λ2)k . (28)

Let us find now the Husimi function of the state (27):

QρN (q, p)

= 〈α|ρ̂N |α〉 =
λ2N+2

N !

∞∑
k=0

(N + k)!

k!
(1 − λ2)k |α|

2(N+k)

(N + k)!
e−|α|

2

=
λ2N+2

N !
|α|

2N e−|α|
2

∞∑
k=0

(1 − λ2)k

k!
|α|

2k
=

λ2

N !
λ2N

|α|
2N e−λ2

|α|
2
.

(29)

Now, the Husimi function of the pure Fock state |N 〉 is
given by

QN (q, p) = 〈α|N 〉〈N |α〉 =
1

N !
|α|

2N e−|α|
2
. (30)

Applying to the Husimi function QN the scaling
transformation (16), we obtain

Qλ
N (q, p) = λ2 QN (λq, λp) =

λ2

N !
λ2N

|α|
2N e−λ2

|α|
2
. (31)

Comparing the expressions (29) and (31), we can see that
they are equal. From this fact it follows that after scaling
transformation of the corresponding Husimi functions (16) the
pure Fock state |N 〉 becomes the mixed state, given by the
density matrix ρ̂N .

5. Conclusion

In this paper, we have analyzed the relations between Husimi
functions, Wigner functions and simplectic tomograms. We
found explicit differential and integral expressions for these
relations. We also found in an explicit form the density matrix
for the scaling transformed Husimi functions of Fock states
for the harmonic oscillator.
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