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Abstract
We introduce the concept of the ““polarizedÏÏ distance, which distinguishes
the orthogonal states with di†erent energies. We also give new inequalities
for the known Hilbert-Schmidt distance between neighbouring states and
express this distance in terms of the quasiprobability distributions and the
normally ordered moments. Besides, we discuss the distance problem in the
framework of the recently proposed ““classical-likeÏÏ formulation of
quantum mechanics, based on the sympletic tomography scheme. The
examples of FockÏs, coherent, ““Schro� dinger catsÏÏ, squeezed, phase and
thermal states are considered.

1. Introduction

Last year, an increasing interest to the problem of distance
between quantum states is observed. Di†erent motivations
of this activity can be found in such Ðelds as quantum cryp-
tography, quantum communications, or quantum comput-
ing. Here we discuss the topic mainly from the point of view
of quantum optics. In view of recent impressive progress in
creating and detecting various types of nonclassical states of
light or cooled particles in electromagnetic traps, the
problem of measures of distinguishability or closeness
between di†erent quantum states becomes actual. For
example, in quantum optics, GlauberÏs coherent states [1]

o aT \ exp ([ o a o2/2) ;
n/0

= an

Jn !
o nT (1.1)

are considered frequently as reference states (o nT means the
Fock state with the deÐnite number of photons), so that the
(pure) states di†erent from (1.1) are called sometimes as non-
classical states. But what is the quantitative measure of the
““nonclassicalityÏÏ ? The simplest option is to use the so called
MandelÏs parameter, which equals zeroQ\ n2/n6 [ n6 [ 1,
for all coherent states, since they have the Poissonian
photon statistics. However, this parameter is adequate for a
limited class of states. Consider, for instance, the even and
odd coherent states introduced in [2]

o a ; ^T \ (2[1^ exp ([2 o a o2)])~1@2( o aT ^ o[ aT). (1.2)

In this case MandelÏs parameter equals Q(B) \ ^2 o a o2/
sinh (2 o a o2), and it shows distinctly the qualitative di†er-
ence between the states o aT, o a ; ]T, and o a ; [T, but only
for small values of o a o . If o a o? 1, then Q(B)B 0, although
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the states o a ; ^T are still quite di†erent from the coherent
state. Moreover, for generalized coherent states [3, 4]

o a8 T \ exp ([ o a o2/2) ;
n/0

= an

Jn !
exp [ir(n) o nT (1.3)

we have identically Q4 0 for any function r(n), although
the state may be essentially di†erent from the Glaubero a8 T
state o aT. For example, the choice r(2k) \ 0(mod 2n),
r(2k ] 1)\ [n/2(mod 2n) gives the so-called YurkeÈStoler
state [5]

o a8 TYS \ e~in@4( o aT ] i o[ aT)/J2 (1.4)

which is considered, equally with the even and odd states, as
a representative of a large family of ““Schro� dinger cat statesÏÏ.

The concept of distance gives a possibility to characterize
more precisely the neighbourhood or similarity between the
quantum states. However, the existing approaches (see
Section 2) seem to su†er from certain drawbacks. Some of
the available deÐnitions of a distance are too complicated to
perform concrete calculations. On the other hand, some
consequences of the traditional approaches, being correct
mathematically, contradict the physical intuition. For
example, the known deÐnitions yield the same, at once,
maximum possible value of the distance between any two
orthogonal pure states, whereas from the physical point of
view, the distance between the Ðrst and the 100th Fock
states seems to be much greater than that between, say, the
100th and the 101st states. The distance measures based on
the density operators alone are not sensitive to the di†erence
in energies.

In the present paper we propose new measures which dis-
tinguish di†erent orthogonal states and which are simple
enough to perform the calculations, at least for the most
important families of states used in quantum optics. In our
approach, the distance depends not only on the density
operators alone, but also on some extra Ðxed positively deÐ-
nite operator. Of course, following this way we meet the
problem of the nonuniqueness in the choice of this addi-
tional ““polarizationÏÏ operator. Nonetheless, such a unique-
ness seems not crucial in many physical applications, where
the special role of some operators (like the Hamiltonian or
the quantum number operator) is evident from the begin-
ning. Another goal is to provide an analysis of the distance
problem in terms of the quasiprobability distributions and
in the framework of the ““classical-likeÏÏ formulation of
quantum mechanics proposed recently in [6].
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The paper is organized as follows. In Section 2 we give a
review of the existing approaches to the quantum distance
problem. In Section 3 we concentrate on the properties of
the HilbertÈSchmidt distance (HSD) and we express it in
terms of the quasiprobability functions and ordered
moments. In Section 4 we propose several deÐnitions of the
energy-sensitive distance in terms of the statistical operators
(density matrices). In Section 5 the distinctions between dif-
ferent deÐnitions are illustrated by examples of the Fock,
coherent, ““Schro� dinger catÏÏ, squeezed, phase and thermal
states. The ““classical-likeÏÏ distances between quantum states
are considered in Section 6. The last section contains brief
conclusions.

2. Previous approaches to the quantum distance problem

The distance between two objects a and b is deÐned usually
as a scalar real function satisfying the following properties :

(I) d(a, a)\ 0, d(a, b)[ 0, if a D b, (2.1)

(II) d(a, b)\ d(b, a), (2.2)

(III) d(a, b)] d(b, c)P d(a, c). (2.3)

The property (III) has a clear geometrical meaning as the
triangle inequality, and it implies rather strong limitations
on the possible choice of the function d(a, b). If the ““objectsÏÏ
a and b are di†erent pure quantum states, then the distance
must be some functional written in terms of the Hilbert
space vectors, o aT and o bT, representing the states. One
should remember, however, that the set of quantum states is
in one-to-one correspondence not with the whole Hilbert
space of the wave functions, but with its projective factor
space, since the vectors otT and eir otT describe the same
state. All the requirements are satisÐed, e.g. for the Fubiny-
Study distance [7, 8, 9]

d(FS)(t1, t2)\ J2 (1[ o St1 ot2T o2)1@2 (2.4)

(sometimes the factor is replaced by 1 or 2), although aJ2
slightly di†erent deÐnition

d(min)(t1, t2)\ inf
r

pot1T [ eir ot2Tp

\ J2 (1[ o St1 ot2T o )1@2 (2.5)

is also possible [10]. Taking a one-parameter family of
states t(t) generated by the time evolution operator, one
obtains, both from (2.4) and (2.5), the inÐnitesimal distance
along the evolution curve in the projective Hilbert space

ds \ J2 [ 2 o St(t) ot(t ] dt)T o2

B 2J1 [ o St(t) ot(t ] dt)T o . (2.6)

The deÐnition (2.6) was used in studies devoted to the geo-
metrical aspects of the quantum evolution and gener-
alizations of the time-energy uncertainty relations [9, 10, 11,
12, 13, 14, 15, 16, 17]. For a family of states t(s) dependent
on a continuous vector parameter . . . ,s \ (s1, s2 , s

n
) ½ Rn

one can introduce the Riemannian metrics according to pt(s
and measure not the ““shortestÏÏ] ds)[ t(s)p2\ c

ij
ds

i
ds

j
distance (3.1), but the distance along a geodesics on a curved
manifold, which can be much greater than the ““shortestÏÏ
one. The concrete examples of the geometries on the mani-
folds corresponding to the most known continuous families

of quantum states (namely, coherent, squeezed and dis-
placed states) were studied in detail in [16, 18, 19, 20, 21,
22].

Wootters [23] proposed the distance between the pure
states in the form of the angle between the corresponding
rays in the Hilbert space d(W) ( ot1T, ot2T)\

For inÐnitesimally close states, the di†er-cos~1 o St2 ot1T o .
ential form of this distance coincides (up to a coefficient)
with (2.6) [24]. Recently, the Wootters and Fubini-Study
metrics were compared in [25].

Now let us turn to the mixed quantum states, described
by positively deÐnite statistical operators with the unitoü
trace : The Ðrst deÐnition of the distance betweenTroü \ 1.
mixed states in the physical literature, perhaps, was given in
[26]

d(JMG)(oü 1, oü 2) \ sup
AAA/1

oTr([oü 1[ oü 2]AŒ ) o . (2.7)

Restricting the family of the bounded operators in thisAŒ
deÐnition by the projection operators one obtainsEŒ \ EŒ 2,
an equivalent deÐnition [27]

d(JMG)(oü 1, oü 2) \ sup
E

oTr([oü 1[ oü 2]EŒ ) o\ 12poü 1[ oü 2p1, (2.8)

where pAŒ p1 4 Tr JAŒ ¤AŒ 4 ; o j
n
o , the summation being

performed over all the eigenvalues of the operatorj
n

AŒ .
Actually, the right-hand side of eq. (2.8) was used by Hillery
[28] as a starting point in his deÐnition of the distance
between a state and a given family of ““classicalÏÏ statesoü oü cl
as More sophisticated deÐnitions of thed \ infoclpoü [ oü clp1.
distance were given, e.g. in [29, 30]. However, they are so
complicated from the point of view of calculations, that no
explicit examples were considered.

One of the most frequently cited in the physical literature
deÐnitions is the so-called BuresÈUhlmann distance (BU-dis-
tance) [31, 32]. It has the form (see also [27, 33, 34, 35])

d(BU)(oü 1, oü 2) \ (2[ 2 Tr Joü 11@2oü 2 oü 11@2 )1@2 (2.9)

where the operator is deÐned as the positively semi-oü 1@2
deÐnite Hermitian operator satisfying the relation (oü 1@2)2\oü .
This operator is unique. Although the right-hand side of
(2.9) seems asymmetrical with respect to and actuallyoü 1 oü 2 ,

[35]. For pure quantum statesd(BU)(oü 1, oü 2) \ d(BU)(oü 2 , oü 1)
the BU-distance coincides with the ““minimalÏÏoü t\ otTSt o

distance (2.5) due to the relations If one ofoü t1@2 \oü t2 \oü t .
the states is pure, then

d(BU)( otTSt o , oü ) \ J2 (1[ JSt o oü otT )1@2. (2.10)

However, the calculations are much more involved in the
generic case of nondiagonal statistical operators, so that the
explicit forms of the BuresÈUhlmann distance were found
only for Ðnite-dimensional N ] N density matrices
(especially for N \ 2 and N \ 3) [34, 36, 37] and, recently,
for squeezed thermal states [38, 39] and displaced thermal
states [40].

3. Distances based on the Hilbert–Schmidt norm

A simple expression for the distance between quantum
states, enabling to perform calculations for the most impor-
tant classes of states (at least in the problems of quantum
optics), is based on the HilbertÈSchmidt norm pAŒ p2 4

JTr(AŒ ¤AŒ ). The HilbertÈSchmidt distance (HSD) of two sta-

Physica Scripta 59 ( Physica Scripta 1999
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tistical operators and is deÐned as [8, 9, 16, 27, 41, 42,oü 1 oü 2
43]

d(HS)(oü 1, oü 2)\ poü 1[ oü 2p2\ MTr [(oü 1[ oü 2)2]N1@2

\ [Tr (oü 12) ] Tr (oü 22)[ 2 Tr (oü 1oü 2)]1@2. (3.1)

In particular (we write simply d instead of d(HS) in all cases
when it does not lead to a confusion),

d( otTSt o , oü )\ [1] Tr (oü 2)[ 2St o oü otT]1@2

O J2 [1 [ St o oü otT]1@2, (3.2)

so the HSD (3.1) goes to the FubiniÈStudy distance (2.4) in
the special case of two pure states. The possible values of the
HilbertÈSchmidt distance are restricted by 0 O d(oü 1, oü 2) O

the maximum being reached for any pair of orthog-J2, J2
onal (pure) states.

In many cases it is convenient to describe the quantum
states with the aid of quasiprobability distributions, which
can be written as special cases of the general CahillÈGlauber
s-distribution [44]

W (a, s)\ Tr [oü TŒ (a, s)], (3.3)

where

TŒ (a, s)\
P d2f

n exp
C
f(aü ¤ [ a*)[ f*(aü [ a)] s

2
o f o2
D
,

a, f are complex numbers and are the boson annihi-aü , aü ¤
lation and creation operators (in one dimension for
simplicity). The choice s \ 0 (with yieldsa \ (q ] ip)/J2 )
the Wigner function [45] W (q, p)4 / du exp (ipu)Sq

For s \ [1 we have the so called[u/2 o oü o q] u/2T.
HusimiÈKano or Q-function [46] W (a, [1)4 Q(a) \

whereas in the case s \ ]1 we arrive at theSa o oü o aT,
GlauberÈSudarshan function P(a)4 W (a, ]1) which yields
the ““diagonalÏÏ representation of the statistical operator
[47] Using (3.3) one can write theoü \ / P(a) o aTSa o d2a/n.
HilbertÈSchmidt distance in terms of integrals over the phase
space :

d2(oü 1, oü 2)\
P dq dp

2n [W1(q, p)[ W2(q, p)]2 (3.4)

\
P d2a

n [Q1(a)[ Q2(a)][P1(a)[ P2(a)] (3.5)

\
P d2a d2b

n
d2b
n e~@a~b@2

] [P1(a)[ P2(a)][P1(b)[ P2(b)]. (3.6)

If one knows (e.g., from experimental data) all normally
ordered moments then the statisticalM(k, l)\Tr (aü ¤kaü loü ),
operator can be reconstructed as follows [48È50] :oü

oü \ ;
k/0

= ;
l/0

=
M(k, l)aü

k, l , aü
k, l4 ;

j/0

min Kk, lL ([1)jo l[ jTSk [ j o

j !J(k [ j) !(l[ j) !
.

(3.7)

Using this formula one can write the HilbertÈSchmidt dis-
tance in the form of a series

d2(oü 1, oü 2)\ ;
s/0

= ;
k/0

s ;
l/0

s ([1)s`k`ls !
k !(s [ k) !l !(s [ l) !

] *M(k, l)*M(s~k, s~l), (3.8)

where For example, in the case of*M(k, l)4 M1(k, l)[ M2(k, l).
the coherent state o aT one has M(k, l)\ a*kal and (3.8) con-
verges to the closed expression (5.1).

An advantage of the HilbertÈSchmidt distance is that it
permits to obtain simple inequalities for the distances
between neighbouring states. Consider, for example, the dis-
tance between an arbitrary state and the vacuum stateoü
o 0TS0 o . Using formula (3.2) and the identities &Sn o oü o nT 4

1, one can write the following chain of rela-&nSn o oü o nT 4 n6 ,
tions :

d(oü , o 0TS0 o ) O [2(1[ S0 o oü o 0T)]1@2\
C
2 ;

n/1

= Sn o oü o nT
D1@2

O
C
2 ;

n/1

=
nSn o oü o nT

D1@2\ J2n6 . (3.9)

This inequality is useful if For an arbitrary referencen6 > 1.
Fock state o nTSn o one can prove in a similar way the
inequalities

d(oü , o nTSn o ) O J2 [S0 o oü o 0T ] n6 [ nSn o oü o nT]1@2, (3.10)

d(oü , o nTSn o ) O J2 [p
n
] (n [ n6 )2]1@2 (3.11)

where is the variance of the number operatorp
n
4 n2[ (n6 )2

in the state oü .
In general, one may identify the quantum state not neces-

sarily with the statistical operator but with any functionoü ,
of this operator As a consequence, a whole family off (oü ).
the modiÐed HilbertÈSchmidt distances can be introduced
according to the deÐnition

D
f
(oü 1, oü 2) \ p f (oü 1) [ f (oü 2)p2

\ (TrM[ f (oü 1) [ f (oü 2)]2N)1@2

\ (Tr [ f 2(oü 1)]] Tr [ f 2(oü 2)]

[ 2Tr [ f (oü 1) f (oü 2)])1@2. (3.12)

For pure states, coincide with the FubiniÈD
f
-distances

Study distance (2.4) for any reasonable function f (oü ).
However, for mixed states the new distances are essentially
di†erent. For example, choosing we obtain thef (oü ) \ oü 1@2
distance

d8 (oü 1, oü 2) \ [2[ 2Tr (oü 11@2oü 21@2)]1@2 (3.13)

which coincides with the BuresÈUhlmann distance (2.9) for
any commuting operators and (remember that the pureoü 1 oü 2
state projection operators otTSt o and orTSr o do not
commute if If one of the states is pure, thenotTD orT).

d8 (otTSt o , oü ) \ \ J2 [1 [ St o oü otT]1@2 (3.14)

so the inequalities (3.9)È(3.11) hold for the asd8-distance,
well.

4. Energy-sensitive distance between quantum states

The HilbertÈSchmidt distance between any states cannot
exceed the limit value In principle, one could ““stretchÏÏJ2.
the distance between remote states, introducing some
monotonous function F(d) with the property F(J2 )\ O.
But such a simple modiÐcation yields the same (although
inÐnite) distance for any pair of orthogonal states.

To distinguish orthogonal states with di†erent sets of
quantum numbers, we have to break the symmetry of the
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Hilbert space with respect to ““rotationsÏÏ of the basis, i.e. to
Ðx some ““directionÏÏ given by a positively deÐnite Hermitian
““referenceÏÏ operator However, we still want to use theZŒ .
advantage of the HilbertÈSchmidt norm. So, we deÐne the
““Z-polarizedÏÏ distance as

d
Z
(oü 1, oü 2)\ pZŒ 1@2(oü 1[ oü 2)p2 \ [Tr (ZŒ [oü 1[ oü 2)2]1@2

\ [Tr (ZŒ [oü 12] oü 22[ oü 1oü 2[ oü 2 oü 1])]1@2. (4.1)

Another possible deÐnition is

d8
Z
(oü 1, oü 2)\ pZŒ 1@2(oü 11@2[ oü 21@2)p2

\ [Tr (ZŒ [oü 11@2 [ oü 21@2]2)]1@2

\ [Tr (ZŒ [oü 1] oü 2[ oü 11@2oü 21@2 [ oü 21@2oü 11@2])]1@2. (4.2)
Evidently, both the deÐnitions satisfy all the axioms due to
the properties of the HilbertÈSchmidt norm (since we simply
apply this norm to the ““scaledÏÏ operators orZŒ 1@2oü ZŒ 1@2oü 1@2).
In the special case of pure quantum states weoü

i
\ ot

i
TSt

i
o

have

d
Z
2( ot1T, ot2T)\ d8

Z
2( ot1T, ot2T)

\ St1 oZŒ ot1T ] St2 oZŒ ot2T

[ St1 oZŒ ot2TSt2 ot1T

[ St2 oZŒ ot1TSt1 ot2T. (4.3)

If coincides with the unity operator, (4.3) goes to theZŒ
FubiniÈStudy distance (2.4).

A possibility of using some extra operators to deÐne the
distance was mentioned in study [26] whose authors con-
sidered the construction However, it wasTr (AŒ [oü 1[ oü 2]).
rejected on the grounds of the unboundedness, if all observ-
ables A are admitted (the authors of [26] started from the
rough deÐnition : ““Two states are close to each other if all
the expectation values of observables are close to each
otherÏÏ). Here we Ðx the operator depending on the con-ZŒ ,
crete physical problem.

In the case of quantum optics, a natural choice of is theZŒ
quantum number operator

NŒ \ aü ¤aü . (4.4)

Then the N-distance between the Fock states o nT and omT
reads

d
N
(omT, o nT)\ (1[ d

mn
)Jm] n . (4.5)

We see that o 0T) if m[ n, i.e. higherd
N
( omT, o 0T)[ d

N
( o nT,

the energy, more is the distance from the ground state.
Nonetheless, the N-distance also does not seem to be ideal.
Consider, for instance, two Fock states with m, n ? 1. Then

o nT)? 1, even if om[ n oD 1. Such a property ofd
N
( omT,

the distance (4.1) does not agree completely with our intu-
ition. This drawback can be removed, if we assume the fol-
lowing deÐnition :

D
Z
2(oü 1, oü 2)\ Tr (*oü ZŒ *oü )[ [Tr (*oü ZŒ 1@2*oü )]2

Tr (*oü )2 (4.6)

where The right-hand side of eq. (4.6) is non-*oü 4oü 1[ oü 2 .
negative, since it can be written as

D
Z
2\ Tr (*oü )2S(Z1@2 [ SZ1@2T)2T (4.7)

where the average value is deÐned as SZT 4Tr (*oü ZŒ *oü )/
We shall cautiously name as a quasidistance,Tr (*oü )2. D

Z
since we have no proof of the triangle inequality for any

states. Applying (4.6) with to the FockÏs states, weZŒ \NŒ
obtain

D
N
( o nT, omT) \ oJn [ Jm o /J2. (4.8)

This expression obviously satisÐes the triangle inequality.
Moreover, it is in agreement with the representation of the
Fock states in the phase space as circles whose radii are
proportional to the square root of the energy [51, 52]. In
such a case the distance between the 100th and 101st states
is less than that between the ground and the Ðrst excited
states.

A disadvantage of the deÐnition (4.6) is that it complicates
signiÐcantly calculations for non-Fock states. In the case of
coherent states the calculations are simpliÐed if one slightly
modiÐes the deÐnition of the quasidistance in the following
way :

D3
a
2(oü 1, oü 2) \ Tr (*oü aü ¤aü *oü ) [ oTr (*oü aü *oü ) o2

Tr (*oü )2 . (4.9)

Then

D3
a
( o aT, o bT) \ 1

J2
o a [ b oJ1 ] exp ([ o a [ b o2). (4.10)

The right-hand side of eq. (4.10) is a monotonous function
of o a [ b o , increasing from o a [ b o at o a [ b o> 1 to

at o a [ b o? 1. Although we have no proof thato a[ b o /J2
the quasidistance satisÐes the triangle inequality (2.3) forD3

aall states, we can prove that the function (4.10) satisÐes this
inequality for all values of a and b.

5. Examples
5.1. Coherent and FockÏs states

For two coherent states o aT and o bT one Ðnds

d( o aT, o bT) \ J2 [1[ exp ([ o a [ b o2)]1@2. (5.1)

If o a [ b o> 1, then d( o aT, is proportion-o bT) B J2 o a [ b o

al to the geometric distance of the displacement parameters
a and b in the complex plane, but it goes to whenJ2
o a [ b o? 1. The N-distance (4.3) between the coherent
states is given by

d
N
( o aT, o bT)

\ [ o a o2] o b o2[ 2 Re (b*a) exp ([ o a [ b o2)]1@2 (5.2)

so o 0T) if o a o[ o b o . The N-distanced
N
( o aT, o 0T) [ d

N
( o bT,

is equal to the geometrical distance o a [ b o in the complex
plane of parameters, if Re (ab*)\ 0 (i.e. for orthogonal
directions in the complex plane). In Fig. 1 we plot the HS-
and N-distances between the Fock state omT and the coher-
ent state o aT

d(HS)( o aT, omT) \ J2
A
1 [ o a o2m

m !
e~@a@2

B1@2
, (5.3)

d
N
( o aT, omT) \

A
m] o a o2[ 2 o a o2m

(m[ 1) !
e~@a@2

B1@2
(5.4)

as functions of the mean photon number o a o2 for Ðxed
values of m\ 1, 2, 3. The HS-distance has a minimum at
o a o2\ m. For small values of o a o2 we have
d(HS)( o aT, omT) [ d(HS)( o aT, o nT) if m[ n, but this inequality
changes its sign if o a o2 is sufficiently large. The N-distance
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Fig. 1. The dependences of the N-distance (three upper curves) and the
HilbertÈSchmidt distance (three lower curves) between the coherent state
o aT and the Fock states omT with m\ 1, 2, 3, versus the mean photon
number in the coherent state o a o2. The order of curves from bottom to top
(in the part of plot nearby the vertical axis) : the lower curves correspond to
m\ 1 while the upper ones correspond to m\ 3.

has a minimum only for m\ 1, and the m-dependence is
monotonous for all values of o a o2.

5.2. Squeezed vacuum states
The squeezed vacuum state [53] depends on the complex
parameter f with o f o\ 1

o fT \ (1[ o f o2)1@4 ;
n/0

= J(2n) !
2nn !

fn o 2nT. (5.5)

The HS-distance between the states and reads (seeo f1T o f2T
also [50, 54])

d( o f1T, o f2T)\ J2 o f1[ f2 o

o 1 [ f1f2* o1@2 [ o 1 [ f1f2* o

] J(1[ o f1 o2)(1[ o f2 o2)]~1@2. (5.6)

For and this is the geometric distance ofo f1 o> 1 o f2 o> 1
the complex squeezing parameters. Using the parametrisa-
tion f\ tanh q eiÕ, qP 0, we have a simpliÐed formula in
the case /1\/2 :

d( o f1T, o f2T)\ 2 sinh [12(q1[ q2)]
Jcosh (q1[ q2)

. (5.7)

For (5.7) gives the distance between the vacuum andq2\ 0
the squeezed state o f1T.

The N-distance can be expressed as

d
N
2( o f1T, o f2T)\ o f1 o2

1 [ o f1 o2] o f2 o2
1 [ o f2 o2

] 2
o f1f2 o2[ Re (f1f2*)

o 1 [ f1f2* o3

] J(1[ o f1 o2)(1[ o f2 o2) . (5.8)

If then (5.8) has the same limit as the ““unpo-o f1, 2 o> 1,
larizedÏÏ HilbertÈSchmidt distance (5.6) : d

N
B d B o f1[ f2 o .

However, for large values of the squeezing parameter these
two distances become completely di†erent. For example, in
the special case we have instead*/4 arg f1[ arg f2\ 0
of (5.7) the expression (q

j
4o f

j
o )

d
N
2( o f1T, o f2T)\ sinh2q1] sinh2 q2[ 2 sinh q1 sinh q2

cosh2 (q1[ q2)
(5.9)

and ( o fT, o 0T)\ sinh q.d
N

catÏÏ states5.3. ““Schro� dinger
Now let us consider the family of the ““Schro� dinger catÏÏ
states

o a ; rT\ (2[1] cos r exp ([2 o a o2)])~1@2( o aT ] eir o[ aT).

(5.10)

The special cases of this family are even states (r\ 0), odd
states (r\ n) and the YurkeÈStoler states (r\ n/2). A more
general set of states o a ; q, rTD o aT ] qeir o[ aT was
studied in [55]. The square of the distance between the
coherent and cat state with the same values of the param-
eter a equals

d2( o a ; rT, o aT) \ 1 [ exp ([4 o a o2)
1 ] cos r exp ([2 o a o2) . (5.11)

For the distance from the vacuum state we obtain

d2( o a ; rT, o 0T) \ 2[1[ exp ([ o a o2)]
1 ] cos r exp ([2 o a o2) (5.12)

whereas the distance between the two states with the same
parameter a but di†erent values of phases and readsr1 r2
d2(r1, r2) \ [1[ exp ([4 o a o2)][1[ cos (r1[ r2)]

] [1] cos r1 exp ([2 o a o2)]~1

] [1] cos r2 exp ([2 o a o2)]~1. (5.13)

For o a o? 1 we have sin2d2(r1, r2) B 2 ( or1[ r2 o /2).
The N-distances between the same states have an extra

factor o a o :

d
N
2( o a ; rT, o 0T) \ o a o2 1 [ cos r exp ([2 o a o2)

1 ] cos r exp ([2 o a o2) , (5.14)

d
N
2(r1, r2) \ o a o2[1] exp ([4 o a o2)][1[ cos (r1 [ r2)]

] [1] cos r1 exp ([2 o a o2)]~1

] [1] cos r2 exp ([2 o a o2)]~1. (5.15)

Now we have sin for o a o? 1.d
N

B J2 o a o ( or1[ r2 o/2)
Equations (5.11)È(5.15) clearly show that the YS-states are

intermediate between even and odd ones. Moreover, we see
that the distance between the YS and the odd states with the
same o a o is greater than that between the YS and the even
states, and the YS-state is farther from the coherent state
than the even state (whereas the Mandel parameter does not
distinguish the coherent and YS states at all). This example
demonstrates how the concept of distance helps to under-
stand better the properties of di†erent families of quantum
states and the mutual relations between them.

5.4. Coherent phase states
As a further example we consider the coherent phase states
[56]

o eT \ J1 [ ee* ;
n/0

= en o nT, EŒ ~ o eT \ e o eT, o e o\ 1 (5.16)

where

EŒ ~4 ;
n/1

=
o n [ 1TSn o\ (aü aü ¤)~1@2aü

is the SusskindÈGlogower phase operator [57] which can be
considered to certain extent as a quantum analogue of the
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classical phase eir. The HS distance between the states o e1T
and is given byo e2T

d( o e1T, o e2T)\J2 o e1[ e2 o

o 1 [ e1e2* o
. (5.17)

It is proportional to the geometric distance of the complex
parameters and for For any o e o\ 1 thee1 e2 o e1, 2 o > 1.
distance from the vacuum state is simply d( o eT, o 0T) \

At the same time, the is given byJ2 o e o . d
N
-distance

d
N
2( o e1T, o e2T)

\ o e1 o2
1 [ o e1 o2] o e2 o2

1 [ o e2 o2

] 2
(1[ o e1 o2)(1[ o e2 o2)[ o e1e2 o2 [Re (e1e2*)]

[1[ 2 Re (e1e2*)] o e1e2 o2]2 .

(5.18)

In particular, d
N
( o eT, o 0T)\ o e o (1[ o e o2)~1@2.

5.5. T hermal states
The pure quantum state (5.16) has the same probability dis-
tribution o Sn o eT o2 as the mixed thermal state described by
the statistical operator

oü \ 1
1 ] n6 ;

n/0

= A n6
1 ] n6

Bn
o nTSn o (5.19)

provided that one identiÐes the mean photon number withn6
o e o2/(1 [ o e o2) [58]. Moreover, the state (5.16) arises natu-
rally as an exact solution to some nonlinear modiÐcations of
the Schro� dinger equation [59], so it can be named also a
““pseudothermal stateÏÏ [59]. Therefore it is interesting to
compare the expressions (5.17) and (5.18) for the distances
between ““pseudothermalÏÏ states with the analogous formu-
lae for the true thermal states.

The HS distance between two states (5.19) reads

d(HS)(n6 1, n6 2)\
J2 o n6 1[ n6 2 o

J(1] 2n6 1)(1] 2n6 2)(1] n6 1 ] n6 2)
. (5.20)

Although it is proportional to the di†erence of the mean
photon numbers, it goes to zero when andn6 1, 2 ] O o n6 1

The distance to the ground state equals[ n6 2 o\ const.

d(HS)(n6 , 0) \ n6 J2

J(1] n6 )(1] 2n6 )
, (5.21)

and it tends to 1 when i.e. to the value which isn6 ] O, J2
times less than the maximal possible HilbertÈSchmidt dis-
tance. These results become clear if one remembers that
highly mixed states are located, in a sense, deeply ““insideÏÏ
the Hilbert space, since the density operators form a convex
set with the pure states contained in the boundary [60].
Nonetheless, being justiÐed from the mathematical point of
view, these properties do not agree completely with our
physical intuition, because usually we think on highly mixed
states as almost classical ones (all the coherence is lost),
which must be far away from the intrinsically quantum
vacuum state. In particular, it seems a little bit strange that
high temperature states are closer to the ground one than
any pure Fock state.

Using the modiÐed HS distance (3.13) (which coincides
with the BuresÈUhlmann distance in the case involved) we

obtain

d(BU)(n6 1, n6 2)

\ J2
C
1 [ J(1] n6 1)(1] n6 2) ] Jn6 1n6 2

1 ] n6 1] n6 2

D1@2
. (5.22)

In particular, the distance to the ground state equals

d(BU)(n6 , 0) \ J2n6
[J1 ] n6 (1] J1 ] n6 )]1@2

(5.23)

and it tends to the maximal possible value whenJ2 n6 ] O.
It is interesting to compare this formula with the analogous
one for the ““pseudothermalÏÏ state (5.16), but written in
terms of the mean photon number :

d(HS)( o eT, 0) \
S 2n6

1 ] n6 .

We see that the BU-distance for the mixed states is always a
little bit less than the distance between the vacuum and the
pure pseudothermal state with the same value of in agree-n6 ,
ment with the reasonings of the preceding paragraph. For

(5.22) is simpliÐedn6 1, 2? 1

d(BU)(n6 1, n6 2) B
J2 oJn6 1[ Jn6 1 o

Jn6 1] n6 2
. (5.24)

The N-distance between two thermal states (5.19) reads

d
N
(n6 1, n6 2)

\ o n6 1[n6 2 oJ(1]n6 1]n6 2)2]2n6 1n6 2(1]2n6 1)(1]2n6 2)
(1]2n6 1)(1]2n6 2)(1]n6 1]n6 2)

.

(5.25)

As well as for the HS distance, the high temperature states
occur not very far from the ground one :

d
N
(n6 , 0) \ n6

1 [ 2n6 ]
12 when n6 ] O.

At the same time, using the modiÐed N-distance (4.2) we
obtain the expression

d8
N
2(n6 1, n6 2) \ n6 1] n6 2[ 2Jn6 1n6 2

]
AJ(1] n6 1)(1] n6 2) ] Jn6 1n6 2

1 ] n6 1] n6 2

B2
(5.26)

which yields as well as for pure states. Ana-d8
N
(n6 , 0)\ n6 1@2,

lysing formula (5.18) for the N-distance between the ““pseu-
dothermalÏÏ states, one can check that the right-hand side
attains the minimum (for Ðxed absolute values ifo e1, 2 o )

This minimal distance can be written inRe (e1*e2) \ o e1e2 o .
terms of in the form very similar to (5.26), but the lastn6 1, 2
factor has the exponent 3 instead of 2 :

d8
N min2 ( o e1T, o e2T) \ n6 1] n6 2[ 2Jn6 1n6 2

]
AJ(1] n6 1)(1] n6 2) ] Jn6 1n6 2

1 ] n6 1] n6 2

B3
.

(5.27)

Since the fraction inside the parentheses does not exceed 1
(this is a consequence of the inequality n6 1 ] n6 2P 2Jn6 1n6 2 ),
we have for any pair of pured8

N min( o e1T, o e2T) P d8
N
(n6 1, n6 2)

and mixed states with the same mean photon numbers.
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Fig. 2. Di†erent distances between the vacuum and the thermal (mixed)
and pseudothermal (pure phase coherent) states versus the mean photon
number. The order of the curves in the right-hand side of the plot (from
bottom to top) : N-distance for the thermal state ; the HilbertÈSchmidt dis-
tance for the thermal state ; the BuresÈUhlmann distance for the thermal
state ; the HilbertÈSchmidt distance for the pseudothermal state ; N-distance
for the pseudothermal state (it coincides with the modiÐed N-distance d8

N
for the thermal state in the case concerned).

Equations (5.26) and (5.27) can be simpliÐed for n6 1, 2? 1 :

d8
N
2(n6 1, n6 2)B n6 1] n6 2[ 8(n6 1n6 2)3@2

(n6 1] n6 2)2
,

d8
N min2 ( o e1T, o e2T)B n6 1] n6 2[ 16(n6 1n6 2)2

(n6 1] n6 2)3
.

If also then we obtain approximateo n6 1[ n6 2 o> n6 1, 2 ,
expressions resembling formula (4.8) for the quasidistance
between the Fock states, but with di†erent coefficients

d8
N
2(n6 1, n6 2)B J3 oJn6 1[ Jn6 2 o\J3 o n6 1[ n6 2 o

Jn6 1] Jn6 2
,

d8
N min( o e1T, o e2T)B 2 oJn6 1[ Jn6 2 o\ 2 o n6 1[ n6 2 o

Jn6 1] Jn6 2
.

The dependences of di†erent distances between the vacuum
and thermal or ““pseudothermalÏÏ states on the mean photon
number are shown in Fig. 2. The distances of the puren6
states are larger than analogous distances of the mixed
states with the same mean photon numbers, excepting the
case of the which is the same both for thed8

N
-distance

thermal and the phase coherent states. We may conclude
that the seems to be the most adequate from thed8

N
-distance

physical point of view (at least for thermal states).

6. ““Classical-likeÏÏ quantum distances

It is accepted that quantum states are described in terms of
the wave functions (state vectors in the Hilbert space) or
density matrices (statistical operators). However, these
complex-valued objects have rather indirect relations to the
results of measurements, which are expressed in terms of
real positive probabilities. Recently, a new formulation of
quantum mechanics in terms of positive classical probability
distributions was proposed [6, 61, 62]. It is a natural conse-
quence of the concepts of the so called symplectic tom-
ography developed in [63, 64].

Let us introduce the two-parameter family of quadrature
operators [O \ k, l\ O, where andXŒ kl\ kqü ] lpü , qü pü
are the usual coordinate and momentum operators (in one
dimension for simplicity). It can be shown that the probabil-

ity distribution of the real eigenvalues of the Hermi-wkl(X)
tian operator is given by the following integralXŒ kl
transform of the Wigner function :

wkl(X) \
P dq dp

2n d(kq ] lp [ X)W (q, p). (6.1)

The reciprocal transform

W (q, p) \ 1
2n
P

dX dk dl exp [i(X [ kq [ lp)]wkl(X) (6.2)

enables to express any Wigner function (and, consequently,
any density matrix) in terms of the positive marginal prob-
ability distributions which can be obtained, in prin-wkl(X)
ciple, directly from an experiment with the aid of the homo-
dyne detection schemes. Consequently, the description in
terms of the family of classical distributions is com-wkl(X)
pletely equivalent to the standard description in terms of the
density matrix or the wave function. This fact is the basis of
the ““classical-likeÏÏ formulation of quantum mechanics [6,
61, 62, 65, 66, 67]. In this formulation every quantum state
is described not by a single complex-valued function t(x) or
o(x, x@), but by an inÐnite set of classical
positive probability distributions [O \ k, l\ O.wkl(X),
For example, the Fock state of the harmonic oscillator o nT
is described by the family of the marginal distributions [61]

wkl(n)(X) \ wkl(0)(X)
1

2nn !
H

n
2
A X

Jk2] l2
B

(6.3)

where is the Hermite polynomial, while the marginalH
n
(z)

distribution of the vacuum state readswkl(0)(X)

wkl(0)(X) \ 1

Jn(k2] l2)
exp

A
[ X2

k2] l2
B
. (6.4)

Now, considering the quantum states described by two
di†erent sets of the marginal distributions andwkl(a)(X)

we may deÐne the ““classical-likeÏÏ distance betweenwkl(b)(X)
these states as

D
ab
C \

P
dk dlg(k, l)d

ab
(C)(wkl(a), wkl(b)) (6.5)

where is some classical distance between thed
ab
C (wkl(a) , wkl(b))

distributions and A positive weight functionwkl(a)(X) wkl(b)(X).
g(k, l) is introduced to ensure the convergence of the inte-
gral over k, l. Evidently, if the ““partial distanceÏÏ d

ab
C (wkl(a) ,

satisÐes the triangle inequality for all Ðxed values of k,wkl(b))l, this inequality remains valid after multiplying by the posi-
tive function g(k, l) and the subsequent integration over k, l.

Let us consider, for example, the ““KakutaniÈHellingerÈ
Matusita distanceÏÏ [68, 69] between two real nonnegative
distributions andP1(x) P2(x)

d
H

(P1, P2) \
C P

dx(JP1(x) [ JP2(x) )2
D1@2

. (6.6)

Taking into account the normalization condition we arrive
at the ““classical-likeÏÏ analogue of the BuresÈUhlmann dis-
tance

D
ab
H \ J2

P
dk dlg(k, l)

]
C
1 [

P
dXJwkl(a)(X)wkl(b)(X)

D1@2
. (6.7)
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The ““classical-likeÏÏ analogue of the JMG-distance (2.8) is
obtained if one chooses for the classical Kolmogorovd

ab
C

distance [68]

d
K
(P1, P2)\

P
dx oP1(x)[ P2(x) o . (6.8)

To illustrate the new approach let us consider the DH-
distance (6.7) between two coherent states o aT and o bT. Each
of these states is described by means of the families of the
marginal distributions like

wkl(a)(X)\ 1

Jn(k2 ] l2)
exp

A
[ [X [ X1 a(k, l)]2

k2] l2
B
,

X1 a(k, l)\ J2(k Re a ] l Im a). (6.9)

Introducing the polar coordinates in the kl plane,
k \ R cos Ë, l\ R sin Ë, we see that the DH-distance
between the coherent states depends on o a [ b o only :

DabH \
P
0

=
R dR

P
0

2n
dËg(R, Ë)

]M2 [ 2 exp [[12 o a [ b o2 cos2(Ë [ r)]N1@2 (6.10)

(here r is the phase of the complex number a [ b). It is
convenient to choose the weight function g(R, Ë) indepen-
dent on Ë and to impose the condition /0=g(R)R dR\ 1.
Then for close coherent states we have ifDabH\ 4 o a[ b o

o a [ b o> 1. When o a [ b o] O, the DH-distance tends to
the constant value 2nJ2.

The integral over k, l can be calculated explicitly for
classical-like distinguishability measures (DM) which are
deÐned by the same formula (6.5) but without imposing the
requirement (2.3) (the triangle inequality) on the function

The distinguishability measures are frequentlyd
ab
C (wkl(a) , wkl(b)).

used in the classical statistics and the information theory
[68]. Their applications to quantum mechanical problems
were discussed recently in [70, 71]. The most known exam-
ples of classical DM are the Bhattacharyya coefficient [68]

B(P1, P2)\ [ln
P

dxJP1(x)P2(x) (6.11)

and the KullbackÈL iebler distinguishability measure [68]

I(P1, P2)\
P

dx[P1(x)[ P2(x)] ln
P1(x)
P2(x)

. (6.12)

For coherent states both these measures yield similar depen-
dences on the parameters a and b, which di†er only in a
scale factor (we assume the same weight function g(k, l) as
above) :

Dab(E)\ 8Dab(B)\ 4n o a [ b o2. (6.13)

These quantum DM are unbounded when o a [ b o] O, but
they do not satisfy the triangle inequality.

7. Conclusion

Let us summarise the main results of the paper. We have
obtained new inequalities for the HilbertÈSchmidt distance
and its modiÐcations, which can be used for evaluating the
““degree of proximityÏÏ between close quantum states. We
have given new expressions for the HilbertÈSchmidt dis-
tance in terms of quasiprobability distributions and in terms

of the ordered moments. We have constructed the distances
which are sensitive to the energy of quantum states. These
““N-distancesÏÏ are unlimited and they distinguish di†erent
orthogonal states. Besides, we have shown how the concept
of distance can be introduced in the framework of the new
““classical-likeÏÏ formulation of quantum mechanics in terms
of positive probability distributions of the rotated (in the
phase space) quadrature operators.
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