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Role of semiclassical description in the quantumlike theory of light rays

R. Fedele* and V. I. Man’ko†

Dipartimento di Scienze Fisiche, Universita` di Napoli ‘‘Federico II’’ and INFN Sezione di Napoli,
Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy

~Received 29 December 1998; revised manuscript received 1 July 1999!

An alternative procedure to the one by Gloge and Marcuse@J. Opt. Soc. Am.59, 1629~1969!# for perform-
ing the transition from geometrical optics to wave optics in the paraxial approximation is presented. This is
done by employing a recent ‘‘deformation’’ method used to give a quantumlike phase-space description of
charged-particle-beam transport in the semiclassical approximation. By taking into account the uncertainty
relation~diffraction limit! that holds between the transverse-beam-spot size and the rms of the light-ray slopes,
the classical phase-space equation for light rays is deformed into a von Neumann–like equation that governs
the phase-space description of the beam transport in the semiclassical approximation. Here,\ and the time are
replaced by the inverse of the wave number,l” , and the propagation coordinate, respectively. In this frame-
work, the corresponding Wigner-like picture is given and the quantumlike corrections for an arbitrary refrac-
tive index are considered. In particular, it is shown that the paraxial-radiation-beam transport can also be
described in terms of a fluid motion equation, where the pressure term is replaced by a quantumlike potential
in the semiclassical approximation that accounts for the diffraction of the beam. Finally, a comparison of this
fluid model with Madelung’s fluid model is made, and the classical-like picture given by the tomographic
approach to radiation beams is advanced as a future perspective.@S1063-651X~99!18110-8#

PACS number~s!: 41.85.2p, 42.50.2p, 03.65.Ca
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I. MUTUAL CONNECTION OF OPTICS AND MECHANICS

Thirty years ago, Gloge and Marcuse@1# extended the
correspondence between optics and mechanics, going
quantum mechanics to wave optics. They performed a t
sition from geometrical optics to wave optics in a way th
was fully similar to the one given to transit from classic
mechanics to quantum mechanics. In the formal quantiza
of Gloge and Marcuse, a set of quantization rules~in which \
and the time are replaced by the inverse of the wave num
and the propagation coordinate, respectively! is introduced in
the Hamiltonian for electromagnetic~e.m.! rays. The result is
the e.m. wave equation whose limit, in the paraxial appro
mation, gives a Schro¨dinger-like equation called the Fock
Leontovich equation@2#:

il”
]

]z
F52

l” 2

2 S ]2

]x2 1
]2

]y2DF1UF, ~1!

wherel”[l/2p ~l being the wavelength!, z is the propaga-
tion coordinate,x and y are the transverse coordinates, a
U is an affective dimensionless potential energy proportio
to the refractive indexn. Equation~1! is an equation for the
complex e.m. field amplitude. Provided that

E
2`

` E
2`

`

uF~x,y,z!u2dxdy51, ~2!
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uF(x,y,z)u2 gives the normalized e.m. power density as w
as the probability density of finding an e.m. ray at the tra
verse location (x,y). Equation~1! is appropriate for describ
ing an e.m. beam traveling along thez axis.

It is worth noting that the limitl”→0 recovers the geo
metrical optics ~light-ray equation!. In fact, the physical
meaning ofl” is given in terms of the diffraction paramete
The conditionl”Þ0 in the paraxial approximation is con
nected to a weak displacement of light rays from the bea
propagation direction in such a way as to produce a mix
between them. When the beam is travelingin vacuo, in the
exact geometrical optics limit (l”50), if the ray slopes are
initially all parallel to each other, the ray will be straight-lin
parallel to the propagation direction. For finitel” , the ray’s
mixing ~diffraction effect! produces a hyperbolic hyperbo
loid around thez axis that corresponds to a typical caus
shape@3#.

The procedure of Gloge and Marcuse proved to be frui
because it provided for transferring algorithms and many
lutions of quantum mechanics to radiation beam physics,
pecially for optical fibers@4,5#, coherent and squeezed sta
theories@6–11#, Schrödinger cat states@12,13#, and phase-
space investigations within a Wigner-like picture@14# where
a quasiclassical distribution, fully similar to the quantu
Wigner transform@15# governs the paraxial e.m. ray evolu
tion. At the present time, quantum methodologies are app
to a very large body of branches in which the physics
volved is basically classical. Such kinds of descriptions
referred as toquantumlike descriptions@16,17#.

In this paper, we propose a method, alternative to the
of Gloge and Marcuse, to transit from geometrical optics
wave optics, namely, from the classical-like description
the quantumlike description of light-ray optics, by using
deformation method employed recently in electron opt
@18#. This allows us to get an effective description of ligh

-
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PRE 60 6043ROLE OF SEMICLASSICAL DESCRIPTION IN THE . . .
ray optics that shows the role played by the semiclass
approximation in the quantumlike theory of light rays.
Sec. II we present the classical-like phase-space equatio
light rays for an arbitrary refractive index. In Sec. III th
deformation procedure is used to transit from the ab
classical-like phase-space equation to an effective quan
like equation in the semiclassical approximation, which f
mally coincides with the von Neumann equation. This ‘‘d
formed’’ phase-space description allows us to recover
Wigner-like picture, which is widely used to describe t
e.m. beam transport in phase space@14#. The quantumlike
picture of Gloge and Marcuse as well as the Fo
Leontovich Schro¨dinger-like equation are then recovered
the semiclassical approximation. In Sec. IV the hierarchy
the moment equations that are associated with the
Neumann-like equation is obtained, and a fluid model tha
associated with the beam transport in real space is derive
truncation of the above hierarchy. In particular, the case
both the classical and semiclassical fluids are considered
Sec. V the fluid description is compared with Madelung
fluid model. Finally, in Sec. VI conclusions are summarize
remarks are presented, and future perspectives are discu
with special attention given to the classical-like picture p
vided by the tomographic approach to radiation beams.

II. CLASSICAL-LIKE PHASE-SPACE EQUATION
FOR LIGHT RAYS

In this section we develop the classical-like description
geometric optics in the phase space in terms of a class
phase-space distribution of the light rays in the case of
arbitrary refractive index. We confine our attention to t
case of the paraxial approximation, namely,dx/dz[x8!1
anddy/dz[y8!1. Taking into account this approximation
it can easily be shown that the following single-light-ra
equations hold:

drW'

dz
5PW' , ~3!

dPW'

dz
52¹W 'U, ~4!

where rW'[xx̂1yŷ, Px[(n/n0)x8/(11x821y82)1/2'(n/
n0)x8, Py[(n/n0)y8/(11x821y82)1/2'(n/n0)y8, and PW'

[Pxx̂1Pyŷ (n0 being the constant average ofn close to the
z axis!. Thus we can associate with a single ray a classi
like particle trajectory. Consequently, Eq.~4! shows that the
refractive index provides an effective force on each sin
light ray. Consequently, in the paraxial approximation, as
the particle systems, we may introduce a distribution
phase spacer(x,y,Px ,Py ,z) that is constant in its characte
istics, i.e.,

]r

]z
1$r,H%50, ~5!

where $ , % denotes the classical Poisson brackets. Equa
~5! can be explicitly written as
al
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]r

]z
1~PW'•¹W '!r2~¹W 'U !•

]r

]PW'

50. ~6!

Let us consider, around the point (rW'0 ,PW'0), the phase-space
volume elementd2r'd2P'5dxdydPxdPy . Here the quan-
tity r(rW'0 ,PW'0 ,z)d2r'd2P' is the probability of finding a
light ray at the transverse locationrW'0 with slopePW'0 , pro-
vided that the following normalization condition holds:

E r~rW' ,PW' ,z!d2r'd2P'51. ~7!

Equation~6! describes the evolution of the light rays in th
paraxial approximation and in the geometrical optics conte
However, we point out that Eq.~6! is still suitable to describe
the beam optics beyond the exact geometrical-optics limit
fact, in the case of vacuum,U50, and in the case of linea
focusing ~defocusing! devices,U5k1x2/21k2y2/2, Gauss-
ian beams, whose propagation is affected by the diffract
can be also described by Eq.~6!. To give the reader an idea
let us consider a simple two-dimensional~2D! ~the
y-transverse component is neglected, for simplici!
focusing/defocusing, infinitely thick~in both thex andz di-
rections! device with refractive index of the formU
5k(z)x2/2, with k(z) being the strength of the device. Thu
in this case Eq.~6! becomes

]r

]z
1p

]r

]x
2k~z!x

]r

]p
50, ~8!

where, for simplicity, we have putPx[p. We look for a
solution of Eq.~8! of the form

r~x,p,z!5A expH 2
1

B
@c~z!x212a~z!xp1b~z!p2#J ,

~9!

whereA andB are positive constants anda(z), b(z), c(z)
are functions to be determined. Thus, by defining the seco
order momentssx(z), sp(z), andsxp(z) of r as

sx
2~z!5E r~x,p,z!x2dxdp[^p2& ~10!

~the beam spot-size!,

sp
2~z!5E r~x,p,z!p2dxdp[^p2& ~11!

~the momentum spread or rms of ray slopes!, and

sxp~z!5E r~x,p,z!xpdxdp[^xp& ~12!

~the ray correlation!, Eq. ~9! can be cast in the following
normalized form:
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r~x,p,z!5
1

pl”
expH 2

2

l” 2 @sp
2~z!x222sxp~z!xp

1sx
2~z!p2#J , ~13!

where

sx5l” b, sxp5l” a5sx

dsx

dz
, sp5l” c, ~14!

and

B5
l”

2
. ~15!

It can be also easily proven thatsx
2(z)sp

2(z)2sxp
2 (z)

5l” 2/45const, and consequently,

sx
2~z!sp

2~z!>
l”

2
, ~16!

which represents a sort of quantumlike uncertainty relati
In particular, the minimum uncertainty corresponds to
well-known diffraction limit @3#

~sxsp!min.
l”

2
. ~17!

Equation ~17! is usually observed when the focusing of
monochromatic radiation beam of wavelengthl is produced
in vacuo@3#. Furthermore, we observe that the above pha
space distribution function of light rays associated with
Gaussian beam gives the following space density:

Lx~x,z![E r~x,p,z!dp5
1

A2psx
2~z!

expF2
x2

2sx
2~z!G ;

~18!

and the following ray-slope distribution:

Lp~p,z![E r~x,p,z!dx5
1

A2psp
2~z!

expF2
p2

2sp
2~z!G .

~19!

It is worthwhile to observe that, in the case where the be
is in a vacuum (k50), solution ~9!, remains formally the
same.

Remarkably, Eqs.~17! and ~13! show that, due to the
diffraction limit, we cannot resolve among two or more lig
rays in phase-space regions of size the order ofl” . If the limit
l”→0 is not exactly taken, but neverthelessl” is considered,
however small, we are still within the framework of ge
metrical optics. Thus in the paraxial approximation Eq.~8!
still describes the phase-space evolution in a linear dev
On the other hand, the diffraction limit introduced by no
zerol” introduces, by virtue of Eq.~17!, an indistinguishabil-
ity among the light rays.

In the next section, we develop an effective phase-sp
description that takes into account this indistinguishabil
We conclude the present section by observing thatLx(x,z)
.
e

e-

m

e.

ce
.

must also represent, according to the results of Sec. I,
e.m. power density that is proportional to the modulus squ
of the e.m. field amplitude associated with the beam.

III. DEFORMED PHASE-SPACE DESCRIPTION

In this section, we apply a deformation method that w
used recently in electron optics to transit from the class
phase-space ray equation to a quantumlike phase-spac
equation in the semiclassical approximation@18#. We want to
make a similar transition here, starting from the classi
phase-space light ray equation~6!. We still confine our at-
tention to the 2D case~the y direction is ignored, for sim-
plicity! and take the same steps as in@18#. In spite of the fact
that the formalism we apply below is almost identical to t
formalism applied for the description of the electronic ra
@18#, the radiation field treated here is a physically differe
object; this is the reason we present in detail how to der
the von Newman equation for the phase-space descriptio
light beams, which is a new aspect in comparison with
electronic ray physics of@18#.

Let s0 be the minimum spot size that can be achievedin
vacuowith an initial focusing condition, and let us define th
parameterh[l” /(2s0). It is easy to see that, in the paraxi
approximation, this quantity is much smaller than 1. In fa
by denoting bysp0 the rms of the ray slopes correspondin
to the above minimum spot size, from Eq.~17! is clear that

h[
l”

2s0
.sp0.K S dx

dzD
2L

max

1/2

!1. ~20!

The above 2D phase-space light-ray equation for an a
trary refractive index can be explicitly written as

]r

]z
1p

]r

]x
2

]U

]x

]r

]p
50. ~21!

By introducing the dimensionless variables

z̄[
z

2s0
, x̄[

x

2s0
, ~22!

Eq. ~21! assumes the form

]r̄

]
z̄1p

]r̄

] x̄
2S ]Ū

] x̄
D ]r̄

]p
50, ~23!

where r̄[r(x/2s0 ,p,z/2s0)[r̄( x̄,p,z̄) and Ū[U(x/
2s0 ,z/2s0)[Ū( x̄,z̄).

According to the above results, the indistinguishabil
among two or more rays due to the paraxial diffraction is
the order ofh!1. Thus]Ū/] x̄ in Eq. ~21! can be conve-
niently replaced by the following symmetrized Schwarz-li
finite difference ratio:

]Ū

]x
'

Ū~ x̄1h/2!2Ū~ x̄2h/2!

h
. ~24!

This way, Eq.~21! must be replaced by the following equa
tion for an effective distribution, sayr̄w( x̄,p,z̄;h):
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]r̄w

] z̄
1p

]r̄w

] x̄
2

Ū~ x̄1h/2!2Ū~ x̄2h/2!

h

]r̄w

]p
50. ~25!

Given the smallness ofh, multiplying both the numerato
and denominator of the last term of the left-hand side~lhs!
by the imaginary uniti , we have

Ū~ x̄1h/2!2Ū~ x̄2h/2!

ih
i
]r̄w

]p

'
Ū„x̄1 i ~h/2!]/]p…2Ū„x̄2 i ~h/2!]/]p…

ih
r̄w . ~26!

Thus, going back to the old variablesx andz, Eq. ~25! as-
sumes formally the look of a von Neumann equation@15,19#

H ]

]z
1p

]

]x
1

i

l” FUS x1 i
l”

2

]

]pD2US x2 i
l”

2

]

]pD G J rw50,

~27!

where rw[r̄w(2s0x̄,p,2s0z̄;2s0h)[rw(x,p,z;l” ). Equa-
tion ~27! shows that, in the framework of this effective d
scription, the phase-space evolution equation for light ray
a quantumlike phase-space equation, where\ and the timet
are replaced byl” and the propagation coordinatez, respec-
tively. However, some considerations are in order.

Approximation~24! is due both to the smallness ofh and
the fact that an evaluation ofŪ variation around the location
x̄ does not make sense within an interval of sizeh. This, in
fact, corresponds to the intrinsic uncertainty produced am
the rays by the paraxial diffraction. Thus, Eq.~25! represents
a possible way to take into account the ray mixing produ
by the paraxial diffraction in this evaluation.

Since

ŪS x̄1
ih

2

]

]pD2ŪS x̄2
ih

2

]

]pD5
]Ū

] x̄
ih

]

]p
1OS h3

]3

]p3D ,

approximation~26! is equivalent to assuming that the term
O„h3 (]3/]p3)… are small corrections compared to the lowe
order ones, according to the paraxial approximation. Con
quently, approximation~26! plays the role of the semiclass
cal approximation@20#.

While the distributionr(x,p,z) involved in Eq. ~21! is
introduced in a classical framework and is positive defin
the function rw(x,p,z;l” ) is introduced in a quantumlike
framework and is not positive definite. In fact, in this qua
tumlike contextrw(x,p,z;l” ) cannot be used to give infor
mation within the phase-space cells with size smaller thanl” ,
due to the paraxial diffraction, i.e., due to the indistinguis
ability among the light rays. It is clear from the vo
Neumann–like equation~27! thatrw is a sort of Wigner-like
function, which is not positive definite, due to the quantu
like uncertainty principle given in Sec. II. In analogy wit
quantum mechanics,rw(x,p,z;l” ) can be defined as a quas
distribution, even if itsx projection andp projection are
actually configuration-space distribution and momentu
space distribution, respectively. In particular, we assume
the probabilityLx(x,z;l” ) introduced above is
is

g

d

-
e-

,

-

-

-

-
at

Lx~x,z;l” !5E rw~x,p,z;l” !dp, ~28!

provided thatrw also is normalized over the phase space
Remarkably, from the above results it follows that the

may exist a complex function, sayC(x,z), such that

Lx~x,z;l” !5C~x,z!C* ~x,z!, ~29!

which is also used for the description of pure quantum sta
and the following quantumlike density matrix

G~x,x8,z!5C~x,z!C* ~x8,z!, ~30!

which is also used for the description of mixed quantu
states, connected withrw by means of the following Wigner-
like transformation:

rw~x,p,z;l” !5
1

2pl” E2`

`

GS x1
y

2
,x2

y

2
,zDexpS i

py

l” Ddy,

~31!

or, for the pure state,

rw~x,p,z;l” !5
1

2pl” E2`

`

C* S x1
y

2
,zD

3CS x2
y

2
,zDexpS i

py

l” Ddy. ~32!

Consequently, C(x,z) must obey to the following
Schrödinger-like equation:

il”
]C

]z
52

l” 2

2

]2

]x2 C1U~x,z!C, ~33!

which is exactly the Fock-Leontovich equation in the case
a 2D radiation beam@see Eq.~1!#. Note that Eq.~1! has been
recovered by the present deformation method in the se
classical approximation only. Nevertheless, it is valid, in t
paraxial approximation, beyond the semiclassical appro
mation as well.

IV. CLASSICAL AND SEMICLASSICAL RADIATION
FLUIDS

In this section, we consider the hierarchy of mome
equations generated by the von Neumann–like equation~27!
up to second order. In this way, we can give the picture t
we call the ‘‘radiation fluid picture.’’ We distinguish the cas
of l”→0 ~‘‘classical radiation fluid’’! from the one of small
wavelengths~‘‘semiclassical radiation fluid’’!. To this end,
one can calculate the set of moment equations assoc
with Eq. ~27!, respectively. Defining the following Liouville
operator,

L̂[
]

]z
1p

]

]x
2S ]U

]x D ]

]p
~34!

(U being an arbitrary refractive index that can be expand
in Taylor series with respect tox), it is easy to see that Eq
~27! can be cast as
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L̂rw5 (
k51

`
~21!k

~2k11!! S l”

2D 2k ]2k11U

]x2k11

]2k11rw

]p2k11 . ~35!

Note that Eq.~35! reduces to Eq.~21! when the sum at the
rhs is zero. Remarkably, this circumstance is verified
only in the limit l”→0. In fact, it occurs also when, keepin
nonzero l” , the refractive index has a quadratic form
x—this is in full agreement with the results presented in S
II. By introducing then-order ~n being a non-negative inte
ger! moment ofL̂ as

M (n)~x,z![E
2`

`

pnL̂rwdp, ~36!

Eq. ~35! leads to the continuity equation forn50,

]Lx

]z
1

]

]x
~LxV!50, ~37!

the motion equation forn51,

S ]

]z
1V

]

]xDV52
]U

]x
2

1

Lx

]P

]x
, ~38!

the energy equation forn52,

]u

]z
1

]

]x
~uV!1

]

]x
~PV!52S ]U

]x DLxV2
]Q

]x
, ~39!

and so on, where

V~x,z!5
1

Lx
E

2`

`

prwdp[^p&p ~40!

is the current velocity, which is experimentally the first-ord
moment ofrw ,

P~x,z![E
2`

`

~p2V!2rwdp[LxŠ~p2^p&p!2
‹p , ~41!

which is essentially the radiation pressure or the seco
order moment ofrw ,

u~x,z![
1

2
P1

1

2
LxV

2, ~42!

Q~x,z![
1

2 E2`

`

~p2V!3rwdp[LxŠ~p2^p&p!3
‹p ,

~43!

which is essentially the analog of the heat. Additional
from Eq. ~36! we also obtain

M (n)~x,z!52 (
k51

kmax<(n21)/2

~21!kS n
2k11D S l”

2D 2k

3
]2k11U

]x2k11 E
2`

`

pn22k21rwdpÞ0,

;n>3. ~44!

The characteristic of these moment equations is that the
that is ofn order is an evolution for then-order moment of
t

c.

r

d-

,

ne

rw , but contains the (n11)-order moment of this function
Provided that a closure equation is introduced, which rela
the (n11)-order moment with the lower-order ones, th
truncated set of equations, consisting of moment equat
up to then-order plus the closure equation, is fully equiv
lent or Eq.~35!, respectively.

The fluid description is given when the truncation is i
troduced atn51 together with a closure relationship involv
ing the second-order moment. Actually, the picture that
could obtain from the truncation involving Eq.~39! can be
considered as a fluid picture as well. Furthermore, note
all of Eqs.~44! account for quantum-like corrections beyon
the semiclassical approximation.

We can estimate the order of the paraxial diffraction
troduced in Eq.~38!, assuming the form~13! for rw and
making use of Eqs.~40! and ~41!. This results in

P~x,z!5
l” 2

4sx
2 Lx~x,z!. ~45!

Since

l”

2sx
<

l”

2s0
5h!1, ~46!

the last term in Eq.~38!, viz.,

1

Lx

]P

]x
;

l” 2

4sx
2

1

Lx

]Lx

]x
, ~47!

represents the semiclassical approximation of the para
diffraction at the level of the fluid description. Remarkab
truncating the hierarchy at the ordern higher and higher, we
get amesoscopicdescription that is deeper and deeper. Ta
ing all the infinite hierarchy, we will have the deepest mes
scopic description of the system~beyond the semiclassica
approximation!, which corresponds to a fluid scheme that w
could call ‘‘Madelung’s radiation fluid’’~see Sec. V!.

A. Classical radiation fluid „diffractionless beam…

For arbitrary refractive indexU, the fluid description for a
diffractionless beam can be obtained from Eqs.~37! and~38!
in the limit l”→0,

]Lx
(0)

]z
1

]

]x
~Lx

(0)V(0)!50, ~48!

S ]

]z
1V(0)

]

]xDV(0)52
]U

]x
, ~49!

where the superscript~0! means that we are taking the abo
limit. In this limit, we observe that

rw~x,p,z;l”→0!→Lx
(0)~x,z!d„p2V(0)~x,z!…[r0~x,p,z!,

~50!

and the local slope of the light rays,p5dx/dz, is determined
only by the gradient ofU. In particular,in vacuo(U50) a
monochromatic beam has the phase-space density of
form P0d(p2V0), with P0 andV0 constants.
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Note that system~48!,~49! is naturally closed. It has bee
used in radiation beam optics to solve a number of proble
when the diffraction is negligible@21#.

B. Semiclassical radiation fluid

Within the fluid description, we now also take into a
count the paraxial diffraction. Thus, the semiclassical fluid
described by Eqs.~37! and~38! plus a suitable closure equa
tion. The result shown by Eq.~45! for Gaussian beams sug
gests that we assume, in general, this relationship, at
present level of fluid description, to be the required suita
closure equation. Consequently, Eqs.~37! and ~38! become

]Lx
(1)

]z
1

]

]x
~Lx

(1)V(1)!50, ~51!

S ]

]z
1V(1)

]

]xDV(1)52
]U

]x
2

l” 2

4sx
2

1

Lx
(1)

]Lx
(1)

]x
, ~52!

where the subscript~1! means that the paraxial diffraction
now taken into account. This system is fully similar to t
one that can be usually derived for the transverse motio
a dilute particle beam, assuming a fluid model with the id
gas state equation@22#. In fact, in this analogy, the term
(l” 2/4sx

2)(1/Lx
(1))(]Lx

(1)/]x) is replaced, for particle beams
by (e2/4sx

2)(1/n)(]n/]x) . (v th
2 /c2)(1/n)(]n/]x), wheren

is the beam number density,e is the transverse particle bea
emittance,v th is the transverse thermal velocity, and the fo
lowing properties hold:e/2sx.v th /c!1 ~see@23#!, and the
ideal gas state equation assumed in this case is

P5
kBT

mc2 n5
e2

4sx
2 n.

v th
2

c2 n, ~53!
s

s

he
e

of
l

where hereP plays the role of the transverse kinetic pre
sure. On the other hand, radiation pressure is the effect
radiation produces on the surroundings~ponderomotive ac-
tion!, which is proportional to the square modulus of the e.
field amplitudeE; i.e., P}uEu2. We note thatuEu2 andLx

(1)

essentially coincide~apart from a normalization factor!; i.e.,
uEu2}Lx

(1) . Consequently, we can provide for the followin
physical interpretation of the closure equation~45!. We ob-
serve that sincesp;l” /2sx , the mean transverse energy, d
to the diffraction, associated with a single light ray~in

vacuo! is E0[ 1
2 sp

2; l” 2/8sx
2. We recall thatLx(x,z) is the

probability of finding a light ray at location (x,z). Thus,
using arguments analogous to the ones used for particle
tems ~i.e., electronic-ray systems!, we conclude that the
transverse radiation pressure is given by

P~x,z!52Lx
(1)~x,z!E0~z!;

l” 2

4sx
2~z!

Lx
(1)~x,z!. ~54!

C. Coherent states in the semiclassical fluid description

In this section, we give a relevant example of the use
the results presented in the Sec. IV B. In particular, we sh
that Eqs.~51! and~52! are suitable for describing in a natur
way coherent states associated with the radiation fluid m
tion.

Let us start by considering the case ofV(x,z) independent
of x, viz.,

V~x,z![p0~z!. ~55!

In this way, Eq.~52! can be easily integrated with respect
x, giving the normalized density
Lx
(1)~x,z!5

exp$2„4sx
2~z!/l” 2

…@U~x,z!1p08~z!x1g~z!#%

E
2`

`

exp$2„4sx~z!/l” 2
…@U~x,z!1p08~z!x1g~z!#%dx

, ~56!
c-

the
whereg(z) is an arbitrary function ofz, and Eq.~51! be-
comes

]Lx
(1)

]z
52p0~z!

]Lx
(1)

]x
. ~57!

Note that the density is Gaussian if, and only if,U is qua-
dratic in x. Thus, substituting Eqs.~56! and ~57!, we obtain

]U

]z
1p0~z!

]U

]x
52p09~z!x2p0~z!p08~z!2g~z!. ~58!

Let us define the centerx0(z) of the transverse distribution
Lx

(1)(x,z), i.e., the mean value ofx

x0~z![E
2`

`

xLx
~1!~x,z!dx. ~59!
In general, this quantity could not be zero. Taking into a
count this observation, we can now definesx(z) as

sx
2~z![E

2`

`

@x2x0~z!#2Lx
~1!~x,z!dx. ~60!

We now concentrate our attention on the case in which
beam does not spread, namely,

sx~z![sx05const. ~61!

Thus, by differentiating Eq.~60! with respect toz and taking
into account Eqs.~57! and ~61!, we obtain

x08~z!5p0~z!. ~62!
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Let us next concentrate our attention only on the case wh
U is independent ofz. In this case, Eq.~58! can be easily
integrated with respect tox, giving

U~x!52
1

2

p09~z!

p0~z!
x22

1

p0~z!
S 1

2

dp0
2~z!

dz
1g8~z! D x1G,

~63!

whereG is an arbitrary constant, which, without loss of ge
erality, can be put equal to zero. Consequently, the only p
sible form of U(x) compatible with Eq.~55! is to be qua-
dratic with respect tox. For instance, by choosing

U~x!5
1

2
kx2 with k.0, ~64!

from Eq. ~63! we obtain

p091kp050 ~65!

and

g~z!52
p0

2

2
1g0 , ~66!

whereg0 is an arbitrary constant. On the other hand, in vi
of Eqs.~58!, ~64!, and~65!, Eq. ~56! can be cast in the form

L~1!
x~x,z!5A k

2p

2sx0

l”
expF2

2sx0
2 k

l” 2 „x2x0~z!…2G ,
~67!

with

p08~z!52kx0~z!, g~z!5
1

2
kx0

2~z!. ~68!

Consequently, combining Eqs.~62!, ~65!, ~66!, and~68!, we
obtain

1

2
p0

2~z!1
1

2
kx0

2~z!5g05const ~69!

and

x091kx050. ~70!

Finally, by combining Eqs.~60!, ~61!, and ~67!, we obtain
the condition that relatesk, l” , andsx0 ,

ksx0
4 5

l” 2

4
, ~71!

andLx
(1) can be written as

Lx
~1!~x,z!5

1

A2psx0

expF2„x2x0~z!…2

2sx0
2 G . ~72!

We thus can conclude that the distribution~72! with Eqs.
~61!, ~62!, ~65!, ~68!, ~70!, and ~71!, describes a coheren
state associated with the semiclassical radiation fluid.
physical meaning is fully equivalent to the one given in t
re

s-

ts

standard description@6–8#. We would like to point out that
the quantum coherent states, which are described by the
Schrödinger equation, are only analogs of the ones descri
by the Fock-Leontovich equation as in@14#. The quantities
x0(z) andp0(z) account for the real and imaginary parts
the complex shifta, which generates all coherent state
starting from the ground state of both the quantum@6–8# and
quantumlike@24# harmonic oscillator for particle beams,

a~z!5
x0~z!

2sx0
1 i

sx0p0~z!

l”
[a1~z!1 ia2~z!. ~73!

Still keepingU independent ofz, we conclude this section
by considering the case of the equilibrium states~stationary
states! associated with the semiclassical radiation flu
which corresponds to the case ofx05const. Thus, Eq.~62!
gives p050 and from Eq.~58! we get g5const. Conse-
quently, Eq.~56! gives

Lx
~1!~x!5

expF2
4sx0

2

l”
U~x!G

E
2`

`

expF2
4sx0

2

l”
U~x!Gdx

. ~74!

Note that Eq.~74! represents a stationary state of the rad
tion beam for an arbitrary refractive indexU(x) in the semi-
classical approximation.

V. MADELUNG’S RADIATION FLUIDS

In this section, we give the full quantumlike description
the radiation beam beyond the semiclassical approxima
developed in Sec. IV. To this end, let us start from the f
lowing eikonal representation of the complex e.m. field a
plitude C appearing in Eq.~33!,

C~x,z!5Lx
1/2~x,z!expF i

l”
Q~x,z!G . ~75!

Thus, substituting Eq.~75! in Eq. ~33!, we obtain the follow-
ing system of equations:

]Lx

]z
1

]

]x
~Lxv !50, ~76!

S ]

]z
1v

]

]xD v52
]U

]x
1

l” 2

2

]

]x F 1

Lx
1/2

]2Lx
1/2

]x2 G , ~77!

where the current velocityv is now given by

v~x,z!5
]Q~x,z!

]x
. ~78!

Equations~76! and~77! have been widely used in the litera
ture @25,26# to describe the paraxial propagation of a rad
tion beam, especially in nonlinear media, where the refr
tive index depends onLx ~i.e., uCu2), which is a functional
of Lx . Moreover, Eqs.~76! and~77! constitute a closed sys
tem and are formally identical to the equations that desc
the Madelung fluid@27#.
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The last term on the rhs of Eq.~77! accounts for the
pressure term beyond the semiclassical approximation. If
take forLx the same form as the one given by Eq.~18!, the
pressure term of Eq.~77! coincides with the one shown i
Eq. ~47!, and thus in this casev coincides withV(1). In fact,
the term

l” 2

2

]

]x F 1

Lx
1/2

]2Lx
1/2

]x2 G
becomes

2
l” 2

4sx
2

1

Lx

]Lx

]x
.

One important consequence of this result is that cohe
states found in the semiclassical approximation for the se
classical radiation fluids~see Sec. IV! are exact solutions o
the Madelung radiation fluid, as well. However, the statio
ary states are given forv(x,z)5p0(z)[0. Thus it follows
from Eq. ~77! that the square root of the densityLx must
satisfy the following quantumlike eigenvalue problem as
ciated with the Fock-Lentovich equation:

l” 2

2

]2Lx
1/2

]x2 1U~x!Lx
1/25ELx

1/2, ~79!

whereE is a constant. Stationary states~74! are of course
only an approximate solution of Eq.~79! in the semiclassica
limit.

Note that the above Madelung’s fluid approach give
classical-like picture of the e.m. radiation beam transpor
terms of the modulus and phase of the wave function.

VI. CONCLUSIONS, REMARKS, AND FUTURE
PERSPECTIVES

In this paper, we have proposed a deformation proced
which was recently used to give the quantumlike semicla
cal description of the electronic-ray optics@18#, to describe
in a quantumlike context a transition from geometrical opt
to wave optics that is alternative to the one proposed
Gloge and Marcuse@1#.

We have given a phase-space description of the geom
cal optics in terms of a classical probability density distrib
tion of the light rays for an arbitrary refractive index. In th
way, taking into account the quantumlike uncertainty re
tion ~diffraction limit! between the rms transverse ray po
tion sx and the rms ray slopesp , the above deformation
procedure has allowed us to transit to a von Neumann–
equation in the semiclassical approximation that provides
a Wigner-like picture of the radiation beam optics in t
paraxial approximation.

In turn, this picture has allowed us to recover, in the se
classical approximation, the Fock–Leontovich parabo
equation and its Gloge-Marcuse quantumlike interpretat
In this context, the possible negativity of the Wigner-lik
function has been correctly explained in terms of the ab
quantumlike uncertainty relation.

We have also determined the hierarchy of the mom
equations associated with the von Neumann–like equat
e
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and thus given both the classical and semiclassical radia
fluid descriptions in the paraxial approximation. In partic
lar, the inclusion of the paraxial diffraction in the fluid con
text, which characterizes the semiclassical radiation flu
has allowed us to naturally describe the coherent states a
ciated with the radiation beam, whose fluid interpretation
in full agreement with the standard one. Finally, a compa
son between the above radiation semiclassical fluid and
Madelung fluid has been given.

A classical-like approach, which was developed recen
in quantum mechanics and in quantum optics, is the tom
raphic one for describing quantum states. As a natural im
mentation of the classical-like picture given by Madelung
fluid, which will be given in an our future paper, we no
briefly discuss this method as applied to the e.m. beam tr
port.

The above transition to describe light beams in terms
the Wigner function~31! and in terms of the light-beam
wave function@see~29!# provides for the possibility of intro-
ducing a symplectic tomography transform of the Wign
function and the light-beam wave function (l”51)

w~X,m,n,z!5E rw~x,p,z!

3exp@2 ik~X2mq2np!#
dkdqdp

~2p!2 ,

~80!

w~X,m,n,z!5
1

2punu U E C~y,z!expS im

2n
y22

iX

n
yDdyU2

.

~81!

Transform~80! has the inverse

rw~x,p,z!5
1

2p E w~X,m,n,z!

3exp@ i ~X2mq2np!#dmdndX. ~82!

The tomography transform~80! was introduced in quantum
optics @28#, and its partial case~81! was introduced in ana
lytic signal processing@29# and was applied to the quantum
problem of diffraction in time in@30#. Below we discuss the
properties of the tomography transform in relation to t
quantumlike description of light beams. The functio
w(X,m,n,z) is a non-negative function; it is obvious from
Eq. ~81!. This function contains the same information on t
light beam as the Wigner function~31!, in view of relation
~82!.

The function~80! has the meaning of the probability dis
tribution function~tomographic probability! for random ob-
servableX; for m51, n50, it reads

w~X,1,0,z!5uC~X,z!u2.

Let us consider an initial reference frame in phase sp
(x,p) of a light beam and introduce other reference fram
that are obtained from the initial one by rotation~with an
anglew! and scaling~with a scaling parameterl!. The pa-
rametersm,n are connected with the rotation and scaling p
rameters by the following relationships:
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m5el cosw, n5e2l sinw. ~83!

The meaning of tomographic probability is that it is dete
mined as the modulus squared of the light-beam wave fu
tion in an ensemble of all reference frames in phase sp
obtained from the initial reference frame by rotation a
scaling. Due to this, tomographic probability depends on
rameters of the reference frame of the ensemble~83!. As
follows from Eqs.~80! and ~82!, tomographic probability is
related to the Wigner-like function by an invertable integ
transform, is a homogenious function@31#

w~aX,am,an,z!5
1

uau
w~X,m,n,z!, ~84!
ez
.

.

em
ce
-
c-
ce

-

l

and is normalized if the light-beam wave function is norm
ized,

E w~X,m,n,z!dX5E uC~x,z!u2dx51.

Thus, for the light-beam description one can use tomog
phic probability alternatively to the light-beam wave fun
tion or Wigner quasidistribution function. Due to the depe
dence on extra parameters, tomographic probability cont
the information on the profiles of the modulus of light-bea
wave function in all reference frames in the light-ray pha
space obtained by the linear canonical transform~rotation
and scaling! from the initial reference frame.
e
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