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Quantumlike corrections and semiclassical description of charged-particle beam transport

R. Fedele* and V. I. Man’ko†

Dipartimento di Scienze Fisiche, Universita` di Napoli ‘‘Federico II’’
and INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, I-80126 Napoli, Italy

~Received 6 October 1997!

It is shown that the standard classical picture of charged-particle beam transport in paraxial approximation
may be conveniently replaced by a Wigner-like picture in asemiclassical approximation. In this effective
description, the classical phase-space equation for electronic rays is replaced by avon Neumann–like equation,
where the transverse emittance plays the role of\. Relevant remarks concerning the quantumlike corrections
for an arbitrary potential in comparison with the standard classical description of the beam transport are given.
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I. INTRODUCTION

Quantum formalism for describing a number of mac
scopic systems, such as plasmas, linear and nonlinear
tromagnetic~em! radiation beam propagation~for instance,
optical fibers, transmission lines!, em traps, charged-particl
beam transport, etc., have received a great deal of atten
during the last two decades@1#. For these nonproper quan
tum systems, it is appropriate to sayquantumlikedescription
instead of the proper quantum one, because the physic
volved, which is basically classical, can be described by
mally replacing the Planck’s constant with a suitable fun
mental parameter of the particular system considered
quantumlike theory of light rays was, for example, co
structed by Gloge and Marcuse@2# in order to recover wave
optics starting from a formal quantization of geometrical o
tics based on Fermat’s principle. In particular, this proced
has allowed one to recover, in paraxial approximation,
Schrödinger-like equation for the em field, the so-calle
Fock-Leontovich equation@3#, widely used in linear and
nonlinear em radiation optics@4–6#. The transition from
geometrical optics~the analogous of classical mechanics! to
wave optics~the analogous of wave mechanics! was per-
formed by introducing some correspondence rules, fu
similar to the Bohr’s ones, in which\ is replaced byl/2p,
the inverse of the wave number (l/2p[1/k). In particular,
in this context, the paraxial approximation~the analog of the
nonrelativistic approximation of quantum mechanics! de-
scribes the radiation beam transport in an arbitrary med
and the corresponding quantumlike formalism~a quantum-
like uncertainty principle included! and Fock-Leontovich
equation can be fully recovered by formally replacing\ with
l/2p in the nonrelativistic quantum mechanics@2#. This
fruitful procedure has been provided for transferring alg
rithms and many solutions of quantum mechanics to ra
tion beam physics, especially for optical fibers@7,8#, coher-
ent and squeezed states theories@9–14#, Schrödinger cat
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states @15,16#, and phase-space investigations within
Wigner-like picture@17# in which a quasiclassical distribu
tion, fully similar to quantum Wigner transform@18# governs
the paraxial em ray evolution.

More recently, a procedure similar to that ofGloge and
Marcusehas allowed one to construct a quantumlike mo
of charged-particle beam transport in both real space
phase space, calledthermal wave model~TWM! @19#. This
model has been applied to a number of problems of charg
particle beam optics and dynamics@20–25#. It assumes that
the particle beam evolution is governed by a Schro¨dinger-
like equation for a complex function, the so-called bea
wave function ~BWF! whose squared modulus is propo
tional to the beam density where Planck’s constant is
placed by thebeam emittance@26#. In particular, in TWM
framework, a Wigner-like transform, seems to be useful a
appropriate to give the quantum-like phase-space descrip
of particle beams@25#.

In this paper, we want to suggest an approach alterna
to the one that is similar to theGloge and Marcuseprocedure
given by TWM. By starting from the electronic ray conce
given in electron optics, we review the standard electro
ray approach to charged-particle beam optics and dynam
and introduce an effective description of the beam transp
which takes into account the thermal spreading among
electronic rays. In the following sections, we start from t
electronic ray concept and introduce the paraxial-ray
proximation. In Sec. II, the paraxial-ray equation is solv
for the case of a linear lens~Hill’s equation!, while in Sec. III
the statistical description of electronic rays allows us to o
tain some important results such as the virial description
the beam and a quantumlike uncertainty relation. A tw
dimensional~2D! phase-space description of the electron
rays is performed in Sec. IV, where, in the paraxial appro
mation, we show that aneffectivedescription can be given in
terms of aquasidistributionin the phase space, which play
a role analogous to the one played in quantum mechanic
the Wigner function for pure states@18#. An analysis of the
quantumlike correctionsthat the above effective approac
gives is presented in Sec. V where a comparison with
classical approach up to the 4th-order moment descriptio
the system for an arbitrary potential is performed. It is sho
that, for dilute and paraxial beams, the discrepancies are

s-
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ligible. Finally, in Sec. VI we summarize the conclusio
and give some remarks that are relevant for charged-par
and em beam transport as well as for quantum optics
very recent investigations in constructing positive defin
distribution functions such as the one used in symple
tomography@27–29#.

A. The concept of electronic rays
and the paraxial electronic-ray approximation

It is well known thatelectron optics@30# has been devel
oped by using the similarity between charged-particle mot
and the behavior of the light rays in geometrical optics. F
nonrelativistic particle motion, this analogy shows that p
tential energy and particle trajectories play the role fu
similar to the ones played by refractive index and light ra
respectively. In particular, this similarity allows us to intr
duce the concept ofelectronic rays. On the basis of this
optical language, refraction and reflection laws for electro
rays can be introduced and their formulation is fully simi
to the one that is used for light rays. The basic electron op
concepts have been developed in connection with the
experimental investigations of charged-particle motion~ions
and electrons! in oscilloscopes and mass spectromete
However, electron optics have been rapidly developed
applied to electron microscopy@31#, electro-optical transduc
ers @32#, particle accelerators@33,34#, etc.

When the potential is a function of the coordinates,
corresponds to an inhomogenous refractive index, and
electron trajectory through this inhomogenous potential
gion corresponds to a light ray through an inhomogene
medium. In case we have several particles moving toge
in an arbitrary potential, each particle trajectory is an el
tronic ray.

In order to consider a charged particle beam as a spe
case of the above particle system, we introduce the so-ca
paraxial electronic ray approximation@33#. In this case, the
system has a special direction, the instantaneous propag
direction, sayz, and the following conditions hold:

ẋ[
dx

dz
!1, ẏ[

dy

dz
!1, ~1!

wherex andy are the transverse~with respect toz) coordi-
nates. In other words, paraxial approximation correspond
a very small deviation of the electronic rays from the prop
gation direction. Note that, in principle, the beam partic
may have a relativistic motion alongz ~longitudinal motion!
but, in order to be consistent with the paraxial approxim
tion, their transverse motion must be nonrelativistic (v'

[Avx
21vy

2!c).
Let us consider a beam so dilute that the space ch

effects can be considered negligible. If the thermal spread
of the particle velocity is negligible, in the case of aber
tionless focusing, the particle converges in one pointF only
~focal point!. Of course, if the thermal spreading is taken in
account, the above circumstance will be modified. In fa
the beam will not focus at only one point and, if the electr
rays are initially parallel, they will diverge and the bea
naturally defocuses.
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In order to go deep into thethermal spreading among th
electronic rays, in the next section we consider the sing
particle motion in a linear lens and in the section later
statistical treatment of the electronic rays will be performe

II. SINGLE-PARTICLE MOTION
„SINGLE ELECTRONIC RAY …

Let us consider for simplicity the particle motion in th
2D case: for instance, they component of the particle motion
is neglected. Typically, the Hamiltonian for thex component
motion of a single charged-particle with rest massm0 is
given in the following dimensionless form:

H5
p2

2
1U~x,z!, ~2!

wherep5 ẋ is the canonical conjugate momentum. Note th
Eq. ~2! describes a 1D motion~along x) of a classical par-
ticle whenz plays the role of a timelike variable andU is an
effective dimensionless potential energy, which can be
pressed in terms of a polynomial form inx of arbitrary de-
greeN as

U~x,z!5
k0~z!

1!
x1

k1~z!

2!
x21

k2~z!

3!
x31

k3~z!

4!
x41•••

5Sn50
N kn

~n11!!
xn11. ~3!

U has been made dimensionless, dividing the effective
ergy potential of the system by the relativistic longitudin
energym0g0c2[mc2 (g0 being the longitudinal relativistic
factor!. In particular, for a pure quadrupolelike potential~lin-
ear lens! Eq. ~2! becomes

H5
p2

2
1

k1~z!

2
x2. ~4!

Let us consider the equation of motion that follows from E
~4! ~the Hill’s equation@33,35#!:

ẍ1k1~z!x50, ~5!

where ṗ52k1(z)x. The general solution of Eq.~5! can be
put in the following form

x5A2E~z!cos@f~z!2f0#[A2E~z!cosDf~z!, ~6!

where f0 is an arbitrary constant andE(z) is a function
defined unless an arbitrary constant factor. By imposing t
Eq. ~6! is a solution of Eq.~5!, we easily obtain the following
conditions:

E2Dḟ5const[
I 0

2
, ~7!

and

Ë1k1E2
I 0

2

4E3
50. ~8!
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Moreover, it is easy to prove thatx andp satisfy the follow-
ing quadratic form:

J~x,p,z!5g~z!x212a~z!xp1b~z!p25
I 0

2
, ~9!

where

g~z!5
I 0

4E2 1
Ė2

I 0
, a~z!52

EĖ

I 0
52

1

2I 0

dE2

dz
,

b~z!5
E2

I 0
, ~10!

are calledTwiss parameters@35#. Note thatJ(x,p,z) is an
invariant for the Hamiltonian~4!, namely,

]J
]z

1$J,H%50, ~11!

where$•••% denotes the classical Poisson brackets@36#. It is
worth noting that the invariant that is quadratic form in c
ordinates and momentum for the parametric classical os
lator is known as the Ermakov invariant@37# and its quantum
analog was found by Lewis@38# and discussed in@39#. It is
easy to see that the determinant of the matrix associated
the quadratic form~9! is conserved:

gb2a25 1
4 . ~12!

Thus, from Eqs.~10!–~12! we obtain the identity

I 0
2

4
5S Ė21

I 0
2

4E2D E22~ĖE!2, ~13!

and the following inequality, which will be used later:

ES Ė21
I 0

2

4E2D 1/2

>
I 0

2
. ~14!

III. STATISTICAL DESCRIPTION
OF ELECTRONIC RAYS

The results of the previous section can be used now
describe statistically the spreading among the electronic
in a linear lens.

First of all, we observe that solution~6! is typically con-
sidered in particle accelerators for the case of a very smo
k1(z) compared to the variation of thephase advanceDf(z)
@33,40#. Also the amplitudeE(z) is typically a very slow
function compared toDf(z) @33,40#. It is easy to see that in
these circumstances the paraxial approximation is natur
satisfied. In fact, for an arbitrary initial transverse-space p
ticle distribution, most of the particle trajectories remain co
fined in a limited region~if suitable stability conditions
hold!. Consequently, in the statistical description it can
assumed that this region represents a sort ofmean spreadfor
the generic particle position or, equivalently, amean spotfor
a generic electronic ray corresponding to the most proba
phase-space accessible region. This way, we can intro
also the average of an arbitrary observable. In particular
il-
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order to estimate the above spot size we have to compute
following rms definition:

sx
2[^x2&5[ lim

T→`

1

TE0

T

x2~ t !dt. ~15!

Sincex(z) contains a fast-period dependence onz, one can
replace Eq.~15! with an average on the phase

sx
25^x2&5

1

2pE0

2p

x2dDf, ~16!

which gives@the average is performed only on the fast tim
scale, whereE(z) is almost constant#

sx
2~z!5^x2&5E2~z!. ~17!

Consequently, the instantaneous amplitude of solution~6! of
the electronic ray equation in a linear lens corresponds to
statistical estimate of the transverse beam spot sizesx .
Similarly, we define the rms of the electronic ray slopep

[dx/dz5A2ĖcosDf2(I0 /A2E)sinDf, obtaining

sp
2~z![^p2&5Ė21

I 0
2

4E2
5S dsx

dz D 2

1
I 0

2

4sx
2

. ~18!

For the observablexp, the statistical average gives

sxp[^xp&5EĖ5
1

2

d

dz
^x2&5

1

2

dsx
2

dz
, ~19!

and, finally, the mean value of the energy~4!

H~z![^H&5
1

2S Ė21
I 0

2

4E2D 1
1

2
k1E25

sp
2

2
1

k1~z!

2
sx

2 ,

~20!

or, equivalently,

H~z!5
1

2S dsx

dz D 2

1
I 0

2

8sx
2

1
1

2
k1~z!sx

2 . ~21!

Consequently, the HamiltonianH defined by Eq.~21! has
now the meaning of the averaged total energy associ
with the transverse motion of the beam particles. It is ve
easy to prove the following very important relationships:

d2sx
2

dz2
14k1~z!sx

254H ~22!

and

dH
dz

5 K ]U

]z L 5
1

2
k̇1sx

2 . ~23!

Remarkably, Eqs.~22! and ~23! describe statistically~virial
description! the behavior of the paraxial electronic rays in
linear lens of strengthk1(z). But some additional informa-
tion can be obtained from Eqs.~17!–~19!. In fact, the quan-
tities ^x2&, ^p2&, and ^xp& are the elements of thediffusion
matrix whose determinant essentially defines the square
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thediffusion coefficient. Let us introduce the following quan
tity proportional to this coefficient and calledrms emittance
@41,42#:

e

2
5@^x2&^p2&2^xp&2#1/2. ~24!

Note that results~17!–~19! show us that both in the linea
lens and in vacuoe is an invariant and coincides withI 0:

I 0
2

4
5^x2&^p2&2^xp&2. ~25!

For an arbitrary potential,e is not necessarily preserved. R
markably, from Eq.~24! in particular we have

sxsp>
e

2
. ~26!

We would like to stress that Eq.~14! represents a tautology
while the statistical form~26! actually represents a sort o
uncertainty relationeven if the particle beam is aclassical
system. Furthermore, it is clear that Eq.~26! defines the
transverse beam emittance as theminimum reachable uncer
tanty. By using Eqs.~17!–~23!, it is easy to see that thi
minimum is reached at the equilibrium condition (dsx /dz
50). At the equilibrium, the phase-space distribution fo
sufficiently dilute beam is Gaussian in both configurati
and momentum spaces. Let us take these two equilibr
distributions for the dimensionless Hamiltonian~4!, namely,
given by

np
~0!~p!5np0

~0!expF2
p2

2sp0
2 G , ~27!

where sp0
2 [kBT/(mc2)[^p2&z50 (kB and T being the

Boltzmann constant and the transverse temperature of
system, respectively!, and

nx
~0!~x!5nx0

~0!expF2
x2

2s0
2G , ~28!

where s0
2[^x2&z50. Note that ^xp&5^xp&z5050. Conse-

quently, at equilibrium, Eq.~25! gives

^x2&z50
1/2 ^p2&z50

1/2 5
e

2
, ~29!

which proves that the minimum product of the uncertaint
is given at the equilibrium states and numerically coincid
with half of the beam emittance, and now it is easy to pro
that @33#

e

2
5S kBT

mc2D 1/2

^x2&z50
1/2 5

v th

c
s0 , ~30!

which shows explicitly the thermal nature of the beam em
tance;v th[(kBT/m)1/2 represents the transversethermal ve-
locity of the system. Consequently,e scales asAT. The
above results clearly show that, if the temperature of
system is not negligible, the electron rays are affected b
m

he

s
s
e

-

e
a

diffusion whose effect is to spread them out while the be
is propagating. This effect produces adispersionamong the
electron rays in competition with tendency, due to the pot
tial U(x,z), to force them to beordered. To see this diffu-
sion effect more evidently, let us consider the special cas
U(x,z)50 ~i.e., the beam is traveling in vacuo!. In this case,
Eqs.~21! and~23! imply thatH is a positive constant given
by

H5
1

2S dsx

dz D 2

1
e2

8sx
2

5const, ~31!

and, consequently, Eq.~22! becomes

d2sx
2

dz2
54H5const, ~32!

which, for the intial conditionsx(z50)[s0 and ṡx(z50)
50, gives

sx
2~z!5s0

212Hz25s0
21

e2

2s0
2

z2. ~33!

This means that, while the beam is traveling fromz52uz̄u,
the electronic rays will not focus in a one point only. Starti
from an initial spreads̄[sx(2uz̄u)5s0@11(e2/2s0

4) z̄2#1/2,
in the case of focusing the electron rays will reach the m
mum spots0 and then the beam will diverge, giving great
values of the spot. We want to point out that, since the p
ticles are moving in vacuo, their trajectories must be straig
Even if the electron rays are straight, their mixing is due
the thermal spreading~diffusion! in such a way as to produc
the beam envelope described by Eq.~33! ~in 2 transverse
space dimensions, it would be a hyperboloid of rotati
around thez axis!. The entity of this ray mixing is the orde
of e2/4s0

2'v th
2 /c2.

For particle beams in the accelerators, typicallyv th /c is
much less than 1. In fact, transverse particle motion is c
sical while the longitudinal one is relativistic. So, the cond
tion v th /c!1 is thus equivalent to consider in vacuo th
envelope functionE(z) slowly varying with respect to the
oscillating term cosDf. This is, in fact, consistent with the
above paraxial approximation.

IV. PHASE-SPACE DESCRIPTION

The statistical description presented above allows us
understand that, for particle beams with finite emittan
~temperature!, the determination of an electronic ray at th
arbitraryx position of the transverse plane given at eachz is
affected by an intrinsic uncertainty that cannot be reduce
zero. Only when the transverse temperature is exactly z
the electronic ray mixing~diffusion! disappears and finding
an electronic ray at a given transverse position is a determ
istic operation based on simple geometrical arguments.

However, for finite-beam emittance, the intrinsic unce
tainty on the transverse position at eachz cannot allow for
resolving among two or more rays in the sense that they
indistinguishable within this uncertainty which must be t
order ofsx(z). In particular, at the focal point, it would be
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s0. Consequently, for a finite emittance, we need to assig
probability ~in principle, positive and finite! of finding an
electronic ray at the transverse locationx in the plane for
given z. This probability distribution, sayPx(x,z;e), would
be both depending on the~transverse! emittancee ~i.e., trans-
verse temperature! and normalized in thex space, namely,

E
2`

`

Px~x,z;e!dx51, ~34!

with the following physical meaning. MultiplyingPx(x,z;e)
by the total number of the beam particles, one obtains
transverse particle beam density~i.e., the electronic ray den
sity with respect to the transverse direction!.

In order to give the transverse beam dynamics descrip
in terms of this probability distribution, let us start from th
ordinary 2D phase-space equation for the electronic rays
this end, we introduce the phase-space density distribu
r(x,p,z) in such a way to have for a generic observa
f (x,p) the following average:

^ f ~x,p!&5E f ~x,p!r~x,p,z!dxdp, ~35!

provided that the following normalization condition holds

E r~x,p,z!dxdp51. ~36!

By definition r is constant of motion, and, consequent
must obey to the following phase-space equation@43#:

]r

]z
1$r,H%50, ~37!

whereH is the Hamiltonian for an arbitrary potential give
by Eq. ~2!. By using the Hamilton’s equations, Eq.~37! can
be explicitly written in the following form:

]r

]z
1p

]r

]x
2S ]U

]x D ]r

]p
50, ~38!

which describes a phase-space evolution of electronic ra
By introducing the dimensionless variables

z̄[
z

2s0
, x̄[

x

2s0
, ~39!

Eq. ~38! assumes the form

]r̄

] z̄
1p

]r̄

] x̄
2S ]Ū

] x̄
D ]r̄

]p
50, ~40!

where r̄[r(x/2s0 ,p,z/2s0)[r̄( x̄,p,z̄) and Ū

[U(x/2s0 ,z/2s0)[Ū( x̄,z̄).
However, we want to give a more interesting, but a

proximateeffectiveelectronic-ray description, taking explic
itly into account their thermal spreading. According to t
results of the previous section, since for finite emittance
indistinguishability among two or more rays due to the th
mal spreading is the order ofh[e/2s05v th /c!1, ]Ū/] x̄ in
a

e

n

o
n

,

s.

-

e
-

Eq. ~40! can be conveniently replaced by the following sym
metrized Schwarz-like finite difference ratio:

]Ū

]x
'

Ū~ x̄1h/2!2Ū~ x̄2h/2!

h
. ~41!

This way, Eq.~40! may be replaced by the following equa
tion for an effective distribution, sayr̄w( x̄,p,z̄;h):

]r̄w

] z̄
1p

]r̄w

] x̄
2

Ū~ x̄1h/2!2Ū~ x̄2h/2!

h

]r̄w

]p
50. ~42!

The transition from Eqs. ~40! to ~42!, based on physica
arguments, is partially a change of partial differential equ
tion @i.e., Eq. ~40!# to differential-difference equation@i.e.,
Eq. ~42!#, which may be considered as ansatz of adeforma-
tion of the 2D phase-space equation for the electronic ra

Given the smallness ofh, multiplying both numerator and
denominator of the last term of the left-hand side by t
imaginary uniti , we have

Ū~ x̄1h/2!2Ū~ x̄2h/2!

ih
i
]r̄w

]p

'
Ū„x̄1~ ih/2!]/]p…2Ū„x̄2~ ih/2!]/]p…

ih
r̄w .

~43!

Thus, going back to the old variablesx and z, Eq. ~42! as-
sumes formally the look of a von Neumann equation@18,44#
~let us say von Neumann–like equation!:

H ]

]z
1p

]

]x
1

i

eFUS x1 i
e

2

]

]pD2US x2 i
e

2

]

]pD G J rw50,

~44!

where rw[r̄w(2s0x̄,p,2s0z̄;2s0h)[rw(x,p,z;e). Equa-
tion ~44! shows that, in the framework of this effective d
scription, the phase-space evolution equation for electro
rays is a quantumlike phase-space equation where\ and the
time t are replaced by the emittancee and the propagation
coordinatez, respectively.

However, some considerations are in order.~i! Approxi-
mation ~41! is due both to the smallness ofh and the fact
that evaluation ofŪ variation around the locationx̄ does not
make sense within an interval of sizeh. This, in fact, corre-
sponds to the intrinsic uncertainty produced among the r
by the finite-temperature spreading. In other words, ther
mixing of electronic rays affects the evaluation ofU varia-
tion with respect tox. Thus, Eq.~42! represents a possibl
way to take into account the ray mixing in this evaluation

~ii ! Since Ū„x̄1( ih/2)]/]p…2Ū„x̄2( ih/2)]/]p…

5(]Ū/] x̄) ih(]/]p)1O(h3]3/]p3), approximation~43! is
equivalent to assume that termsO(h3]3/]p3) are small cor-
rections compared to the lower-order ones, according to
paraxial approximation. Consequently, from the quantuml
point of view, approximation~43! plays a role analogous to
the one played by thesemiclassical approximation@45#.
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~iii ! While the distributionr(x,p,z) involved in Eq.~38!
is introduced in a classical framework and it is positive de
nite, the functionrw(x,p,z;e) is introduced in a quantumlike
framework, which plays the role of aneffectivedescription
taking into account the thermal spreading among the e
tronic rays. In addition, in this contextrw(x,p,z;e) cannot
be used to give information within the phase-space cells w
size smaller thane, due to the intrinsic uncertainty exhibite
by the system for finite temperatures, i.e., due to the in
tinguishability among the electronic rays. Consequently,
would expect thatrw violates the positivity definitenes
within some phase-space regions. On the other hand,
with the limitations given by points~i! and ~ii !, it is clear
from the von Neumann–like equation~44! thatrw is a sort of
Wigner-likefunction. Thus, it is not positive definite, due t
the quantumlike uncertainty principle given in Sec. III. Th
means that, in analogy with quantum mechani
rw(x,p,z;e) can be defined asquasidistributioneven itsx
projection andp projection are actually configuration-spa
distribution and momentum-space distribution, respectiv
In particular, within the framework of the above effectiv
description of the electronic ray evolution, we assume t
the probabilityPx(x,z;e) introduced above is

Px~x,z;e!5E rw~x,p,z;e!dp, ~45!

provided that alsorw is normalized over the phase space
Note that, for arbitraryU:

lim
e→0

rw~x,p,z;e!5P~0!~x,z!d„p2V~0!~x,z!…[r0~x,p,z!,

~46!

which describes the~transverse! phase-space motion of
cold beam. Multiplying the total number of particle
by P(0)(x,z) we obtain the transverse space density of
electronic rays at eachz for a cold beam. Furthermore
V(0)(x,z) is the ~transverse! current velocity, which in this
case obeys, withP(0)(x,z), the following equations:

]P~0!

]z
1

]

]x
~P~0!V~0!!50 ~47!

~continuity equation!,

S ]

]z
1V~0!

]

]xDV~0!52
]U

]x
~48!

~fluid motion equation!. Note that in the above limit the loca
slope of the electronic raysp5dx/dz is determined only by
the gradient ofU. In particular, in vacuo (U50) a cold
uniform beam has phase-space density of the formP0d(p
2V0), with P0 andV0 constants. With the language of pa
ticle accelerator physics, this kind of beam is calledmono-
chromatic beam. It is easy to see that all the electron rays
a monochromatic beam have the same slope.

The above results allow us to write that, for an arbitra
potential, we have

lim
e→0

Px~x,z;e!5P~0!~x,z!. ~49!
-
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Remarkably, from the above results it follows that it m
exist a complex function, sayC(x,z), such that

Px~x,z;e!5C~x,z!C* ~x,z!, ~50!

used also for a description of pure quantum states, and
following quantumlike density matrix

G~x,x8,z!5C~x,z!C* ~x8,z!, ~51!

used also for description of mixed quantum states, conne
with rw by means of the following Wigner-like transforma
tion:

rw~x,p,z;e!5
1

2peE2`

`

GS x1
y

2
,x2

y

2
,zDexpS i

py

e Ddy,

~52!

or, for pure states,

rw~x,p,z;e!5
1

2peE2`

`

C* S x1
y

2
,zD

3CS x2
y

2
,zDexpS i

py

e Ddy. ~53!

Consequently, C(x,z) must obey to the following
Schrödinger-like equation:

i e
]C

]z
52

e2

2

]2

]x2
C1U~x,z!C. ~54!

This equation has been the starting point to construct
quantumlike approach of charged-particle beams, which
known in the literature as the thermal wave model~TWM!. It
has been applied to a number of problems in particle ac
erators and plasma physics@19–25#. TWM assumes that the
transverse~longitudinal! dynamics of a charged particl
beam, interacting with the surroundings, is governed b
Schrödinger-like equation for a complex function in whic
Planck’s constant is replaced by the transverse~longitudinal!
beam emittance. This complex function, called beam w
function ~BWF! has the following meaning: its square
modulus is proportional to the transverse~longitudinal! beam
density. This way the beam as a whole is thought of a
single quantumlike particle whosediffractionlike spreading
due to the emittance accounts for thethermal spreading.

V. QUANTUMLIKE CORRECTIONS

In this section, we analyze the quantumlike correctio
@46# that the effectiveelectronic ray description presente
above gives with respect to thepure classical treatment. In
other words, we make a comparison between the quant
like description given by Eq.~44! and the one given by Eq
~38!. To this end, we first observe that, if the beam is in
quadrupole~linear lens!, Eq. ~44! collapses in Eq.~38! and
no quantumlike corrections are present. One can calcu
the set of moment equations associated with Eqs.~38! and
~44!, respectively. Defining the followingLiouville operator
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L̂[
]

]z
1p

]

]x
2S ]U

]x D ]

]p
, ~55!

where U is an arbitrary potential that can be expanded
Taylor series with respect tox, it is easy to see that Eqs.~38!
and ~44! become, respectively,

L̂rw50, ~56!

and

L̂rw5 (
k51

`
~21!k

~2k11!! S e

2D 2k ]2k11U

]x2k11

]2k11rw

]p2k11
, ~57!

~eachk being a non-negative integer!. Note that the right-
hand side of Eq.~57! contains an extraterm that is no
present in the classical form~56!. By introducing then-order
(n being a non-negative integer! moment ofL̂ as

M~n!~x,z![E
2`

`

pnL̂rwdp, ~58!

the classical equation~56! leads to

M~n!~x,z!50, ;n>0, ~59!

which, in turn, gives the continuity equation

]Px

]z
1

]

]x
~PxV!50 ~60!

for n50, the motion equation

S ]

]z
1V

]

]xDV52
]U

]x
2

1

Px

]P

]x
, ~61!

for n51, the energy equation

M~2!~x,z!50, ~62!

for n52, and so on, where

V~x,z!5
1

Px
E

2`

`

prwdp ~63!

is the current velocity, which is experimentally the first-ord
moment ofrw , and

P~x,z![E
2`

`

~p2V!2rwdp ~64!

is the kinetic pressure~divided by the total number of the
particles! or the second-order moment ofrw .

On the other hand, the quantumlike equation~57! gives

M~n!~x,z!50, n50,1,2 ~65!

and
r

M~n!~x,z!

52 (
k51

kmax<~n21!/2

~21!kS n

2k11D
3S e

2D 2k ]2k11U

]x2k11 E2`

`

pn22k21rwdp

Þ0 ; n>3. ~66!

Consequently, for an arbitrary potential and up to the ene
equations, the two descriptions~the classical and the quan
tumlike! coincide. The discrepancy appears at the or
equal to or higher than the third one in the moment eq
tions. In principle, Eqs.~56! and ~57! are equivalent to an
infinite set of their moment equations~59! and ~65!–~66!,
respectively. The characteristic of these moment equation
that the one ofn order is an evolution for then-order mo-
ment of rw , but contains a (n11)-order moment of this
function. Provided that aclosure equationis introduced,
which relates a (n11)-order moment with the lower-orde
ones, the truncated set of equations, consisting of mom
equations up to then order plus the closure equation, is full
equivalent to Eqs.~56! or ~57!, respectively.

Usually, the lowest order of truncation is introduced f
n51, by introducing, for the transverse dynamics, the f
lowing ideal gas state equation@46# ~isothermal approxima-
tion!:

Px

kBT

mc2 5P. ~67!

In fact, even if the beam propagates alongz with relativistic
motion, the transverse particle motion aroundz is classical.
Consequently, the beam behaves transversally like a non
ativistic ideal gas. Moreover, note that, denoting withN the
total number of beam particles, the quantityn[NPx is the
transverse number density of the beam. At this level, we
describing our beam in terms of the fluid theory

]Px

]z
1

]

]x
~PxV!50, ~68!

S ]

]z
1V

]

]xDV52
]U

]x
2

v th
2

c2

1

Px

]Px

]x
. ~69!

It is obvious from Eqs.~59!–~66! that the classical and the
quantumlike descriptions coincide at the level of the flu
theory for noncold beams. Note that, in particular, in the
limit e→0, Eqs.~68! and ~69! recover Eqs.~47! and ~48!,
respectively.

Going on ton52, for the truncation a closure equatio
involving the moments of third order and the lower on
have to be introduced. By virtue of Eqs.~60!–~62! and~65!,
the descriptions coincide also at this level if a suitable c
sure equation is chosen for both.

For ordersn>3, according to Eq.~66!, the truncation
cannot allow for having the equivalence between the cla
cal and the quantumlike descriptions. In particular, the thi
order moment equation (n53) of Eq. ~57! is
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M~3!5S e

2D 2S ]3U

]x3 D Px , ~70!

and the one for the fourth-order moment (n54) is

M~4!54S e

2D 2S ]3U

]x3 D PxV. ~71!

The above analysis allows us to conclude thatat the third-
order moment description the discrepancy between the c
sical and the quantumlike descriptions appears as a delic
effect. In fact, for arbitrary potentials and for given emi
tances, the discrepancy increases as the density of the b
Thus, to make it evident, very intense beams are necess

In addition, if U is a symmetric potential with respect t
the propagation directionz, i.e., U(2x,z)5U(x,z), the dis-
crepancy corresponding to the third and the fourth-order m
ments are still negligible for beams that are mainly conc
trated aroundz (x very close to zero, i.e., paraxial beam!,
because in this case]3U/]x3}x'0.

VI. CONCLUSIONS, REMARKS, AND FUTURE
PERSPECTIVES

In this paper, the charged-particle beam transport
been investigated with a quantum-like approach. By star
from the electronic-ray concept in paraxial approximatio
we have given the statistical description of the electronic
evolution, which has allowed us to obtain a quantumlike p
ture of a charged-particle beam transport, where a sor
quantumlike uncertainty principle holds for the spread
particle position distribution and the spread of particle m
mentum. This way we first introduced a sort ofWigner-like
picture behind the electronic ray evolution and then rec
ered the already known quantumlike description for charg
particle beam dynamics called thermal wave model@19–25#.
Within the framework of the Wigner-like picture, the qua
tumlike corrections have been introduced and compared
the standard classical picture for arbitrary potentials, sh
ing that the above quantumlike approach could be a us
tool for particle accelerator physics investigation. It is wo
mentioning that this comparison is in agreement with a
cent numerical phase-space analysis that compares the q
tumlike Wigner function of a charged-particle beam in
quadrupole with small sextupole and octupole aberrati
with the results of a standard particle tracking code simu
tion @25#.

However, the following question naturally arises:What
would be the precise relation between the new Wigner-
formalism and the previous thermal wave model?Well,
TMW provides for a quantumlike description of charge
particle beam transport. This way, using the formal appara
of quantum mechanics, it is possible to introduce the Wig
transform that connects the description in configurat
space~in terms of BWF! with the one in the phase space~in
terms of a Wigner function!. In the early formulation of
TWM @19–25#, the above quantumlike~in particular, the
above Wigner-like! picture was assumed valid beyond t
semiclassical approximation. On the other hand, in
present paper, thetransition from the classical phase-spac
equation to thedeformedphase-space equation is validonly
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in the semiclassical approximation. Consequently, thedefor-
mation methodpresented in this paper allows us to recov
the quantumlike picture, and in particular the Wigner-li
picture, only in the semiclassical approximation. Furth
more, the analysis of the quantumlike corrections shows a
that the above fluid description charged-particle beam tra
port can be thought of in terms of a semiclassical appro
mation of the moment hierarchy description. In fact, at t
fluid level, the truncation is made at orderv th

2 /c2}e2.
Nevertheless, we want to remark that this approach co

be relevant also for a wide spectrum of topics in em radiat
optics, general quantum mechanics, and quantum optics
the considerations that are in order.

~1! Equation~44! collapses in Eq.~38! in the case of a
quadrupole ~harmonic oscillator!. However, due to the
Wigner-like picture, Eq.~44! describes some states that a
not described by its classical counterpart. In other words,
similarity betweenr andrw in the harmonic oscillator is no
possible for all the states. This makes evident aquantumlike
effectthatrw contains and thatr does not contain. Equation
~40! and ~42! become the same equation in the case o
quadrupole, wheree does not appear explicitly. However,
possible normalized solution of this phase-space equation
harmonic oscillator is@25#

1

pe
expF2

2

e
@g~z!x212a~z!xp1b~z!p2#G , ~72!

which explictly depends one. Consequently, in principle, to
recover classical solutions we do not need necessarily to
the limit e→0. In this limit, we can recover the special fam
ily of classical solutions that describe the cold-beam tra
port only, as pointed out in Sec. IV. This means that Eq.~38!
contains something more than the classical limit. In fa
solution ~72!, in which e is a finite quantity, leads easily to
the quantumlike uncertainty relation~26!.

~2! From Eq.~57! it is clear that for finite emittance but in
the case in which (e/2)2]2rw /]p2@(e/2)s]srw /]ps for
s>3, Eqs.~44! and ~38! formally coincide for an arbitrary
~anharmonic! potential. However, also in this case,rw con-
tains, in principle, the quantumlike effects thatr does not
contain. Of course, according to the investigation about
discrepancy given in Sec. V,this quantumlike effect is deli
cate for dilute beams but not, in principle, negligible.

Thus, we can conclude that, for finite temperature:~a! in
vacuo as well as for harmonic potentials, the deformed eq
tion appears formally indistinguishable from its classic
counterpart~also beyond the semiclassical approximatio!,
but the former admits a wider class of solutions, which c
be also negative;~b! in the case of anharmonic potentials, th
deformed equation represents aneffective versionof its clas-
sical counterpart~on phase-space scale greater thane). How-
ever, it coincides with the von Neumann equation in sem
classical approximation only. Consequently, also for th
potentials it admits a solution that can be negative.

At this point, another natural question arises:Do the new
nonclassical states predicted by the Wigner picture cont
physically relevant information? In the quantumlike frame
work, these solutions describe excited states of the be
transport that are not considered in the classical picture
reality, it seems that they could be the quantumlike vers
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of the beam states corresponding to energies greater tha
one associated with the lowest energy~fundamental state!,
which corresponds to a positive distribution with all the cla
sical probability features. However, the above excited sta
can be negative due to the quantumlike uncertainty rela
introduced by the indistinguishability among the electro
rays, but it seems clear that they are intrinsically class
states that cannot give suitable information within pha
space cells with size of ordere. And this is only produced in
order to take into account the above loss of informat
within these cells, by the deformation of the classical pha
space equation.

A third question could be formulated as follows:Does the
above quantumlike formalism provide any new physical
sight into the beam dynamics or it is just a different b
nevertheless more complicated way of expressing ‘‘fami
physics’’? Since we are not allowed, for a given finite tem
perature, to locate exactly an electronic ray within pha
space cells of ordere, the quantumlike description naturall
replaces the classical one. Consequently, the above s
associated with negative phase-space distribution can be
sidered as nonclassical~in the sense of quantumlike! states.
Of course, by reducing the temperature more and more
the classsical features are more and more recovered in su
way that thenonclassicalitydisappears. This aspect sure
represents a new insight with respect to the ordinary class
description of charged-particle beam transport, but keep
in mind that the above quantumlike approach is capable
describing a wealth of phenomena, taking into account
thermal noise involved in the particle beam transport in
way ~even effective! that the pure classical approach cann
give. Consequently, it is clear that the above quantum
approach is not a more complicated way of expressing fa
iar physics. In fact, the quantumlike formalism allows us
solve problems of particle beam transport by using all
knowledge acquired thanks to very well tested technique
solving quantum mechanical problems during a per
longer than half a century.

Finally, we want to remark that, even if we have given
quantumlike picture for charged-particle beam transp
v,
the
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fully consistent with the quantumlike uncertainty relatio
~26!, our description does not contradict classical mechan
In fact, while\ is a fundamental, universal constant,e does
not have such properties. Since the latter depends on
thermal noise, we can,in principle, arrange a series of ex
perimental devices in which the temperature is progressiv
reduced. This way, we enhance the accuracy in finding
electronic ray location by reducing the thermal uncertai
more and more. Consequently, the quantumlike uncerta
in principle collapses into theclassical independence be
tween measuring of spot size and momentum spread. In
sense, oureffectivedescription is formallyquantumlikebut
intrinsically classical. Of course, anatural limitation in re-
ducing the thermal noise is established by theproper quan-
tum uncertainty relation, which states that quantum fluct
tions areunavoidableand intrinsic. In fact, the nature of the
physical systems is basicallyquantumand notclassical, but
this is true for all the systems in nature and not only f
charged-particle beams.

We observe that in quantum mechanics and in quan
optics measuring of the states described by Wigner functi
was recently reduced by means of tomographic procedure
measure a positive marginal distribution related to
Wigner function by an integral transform~the Radon trans-
form of optical tomography method@47,48# or Fourier trans-
form of symplectic tomography@27,28#!. Thus, we could
state that, analogously, in the above quantumlike appro
there is a possibility to transit from the classical phase-sp
equation to an equation for a positive marginal distributi
of two types@28#, which has standard classical features. T
very important problem is considered in a forthcoming p
per.
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