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I. INTRODUCTION

The transition from quantum to classical mechanics has
been an important research subject since the beginning of
quantum mechanics (see [1] for a review). A suitable setting
for this problem is represented by the Wigner-Weyl-Moyal
formalism where the operators corresponding to observables
and the states, considered linear functionals on the space of
observables, are mapped onto functions on a suitable manifold.
Such a representation for quantum mechanics has been
generalized to yield the deformation quantization program [2].
In this quantization program the operator noncommutativity is
implemented by a noncommutative (star) product which is a
generalization of the Moyal product [3–5]. Since then, most
attention to the star-product quantization scheme has been de-
voted to the case where the functions (symbols of the operators)
are defined on the “classical” phase space of the system [6–9].

In a different setting it was established [10,11] that the
symplectic [12–15] and spin [16,17] tomographies, which
furnish alternative formulations of quantum mechanics and
quantum field theory [18], can be described as well within
a star-product scheme. Moreover, in [11] different known
star-product schemes were presented in a unified form. In
these schemes the symbols of the operators are defined in
terms of a special family of operators using the trace formula
(what we sometimes call the “dequantization” map because of
its original meaning in the Wigner-Weyl formalism), while
the reconstruction of operators in terms of their symbols
(the “quantization” map) is determined using another family
of operators. These two families determine completely the
star-product scheme, including the kernel of the star product.

The development of the tomographic formalism is impor-
tant from the point of view of available applications in quantum
tomography. The measuring optical tomogram of photon quan-
tum states by a homodyne photon detector [19–22] provides
the possibility to get direct information on the characteristics
of the states such as their purity as well as to check the
uncertainty relations [23] containing the purity [24] and the
state non-Gaussianity parameters [25]. The optical tomogram
found in these experiments contains complete information on
quantum states. It can be used to study all the quantum effects
without intermediate calculations of the Wigner function or
another quasiprobability which is usually considered the object
to be found in experiments with homodyne-detecting photon
states. But in the framework of the formalism applied in the
optical tomography one needs an explicit and simple method

to calculate means, dispersions, and the highest moment of
physical observables. To do this one has to develop the tools
to work with the tomographic symbols of the corresponding
operators associated with the physical observables.

One of the advantages of the optical tomograms of quantum
states is the fact that the tomograms are fair probability
distributions. In view of this the statistical characteristics of
the physical observables can be expressed by using standard
formulas of probability theory. In these formulas the function
corresponding to the physical observable is integrated with
the weight function, which is the tomographic probability
distribution function. The function corresponding to the
quantum observable is known [26] to be the so-called dual
tomographic symbol of the operator describing the observable.
But the optical dual tomographic symbols are generalized
functions, and they can have the form of singular or regular
generalized functions. Obtaining the explicit expression for
the generalized functions of the physical observables is an
important ingredient to get the physical information from
the photon state optical tomograms which one measures in
experiments with homodyne photon detectors [19].

The aim of our work is to find the explicit expressions of
most physically interesting operators and their dual symbols
in the optical tomography representation, which is necessary
for practical calculations. This paper is organized as follows.
In Sec. II we review the optical tomography representation
of quantum states. In Sec. III the correspondence rules for
physical operators in the optical tomography representation
are found. In Sec. IV the general formalism of the symbols
of the operators is presented in the optical tomography
representation. The expressions for the dual symbols of the
operators in terms of singular generalized functions and for
the kernel of their star product are presented. In Sec. V the
representation of the dual symbols of the operators in terms of
regular generalized functions is given.

II. OPTICAL TOMOGRAPHY REPRESENTATION
OF QUANTUM STATES

In this section we give a short review of the tomographic
representation of quantum mechanics by using a so-called
optical tomogram [27,28]. As we mentioned above for the
photon states this tomogram is measured experimentally
[19,21]. For microwave photons the state tomography is also
realized in experiments [29].
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If we have the density matrix of the quantum state ρ̂, the
optical tomogram is defined as

w( �X,�θ,t) = Tr{ρ̂(t)δ( �X − �̂X(�θ ))}, (1)

where δ( �X − �̂X(�θ)) is a Dirac delta function with arguments

corresponding to n degrees of freedom and �̂X(�θ) is a vector
operator rotated in phase space quadrature components,

�̂X(�θ) =
(

q̂1 cos θ1 + p̂1
sin θ1

m1ω01
; · · · ; q̂n cos θn + p̂n

sin θn

mnω0n

)
,

(2)

where mi and ω0i are constants that have the dimensions of
mass and frequency and are chosen for reasons of convenience
for the Hamiltonian of a quantum system under study. For
simplicity of the formulas let us choose the system of
measurements so that mσ = ω0σ = h̄ = 1.

The definition of the optical tomogram can be given also in
the form

w( �X,�θ,t) = 〈 �X,�θ |ρ̂(t)| �X,�θ 〉, (3)

where | �X,�θ〉 is an eigenvector of the Hermitian operator (2)
for the eigenvalue �X. In the coordinate representation, solving
a differential equation for the components Xi ,

X̂i(θi)|Xi,θi〉 = Xi |Xi,θi〉,
and taking into account that | �X,�θ 〉 = |X1,θ1〉 · · · |Xn,θn〉, we
obtain

〈�q | �X,�θ 〉 = 1

(2π )n/2

n∏
σ=1

1√| sin θσ |

× exp

{
i
Xσqσ − q2

σ −X2
σ

2 cos θσ

sin θσ

+ i
π

4
cos θσ

}
, (4)

where the normalization is chosen so that 〈 �X′,�θ | �X,�θ 〉 =
δ( �X′ − �X). In addition, the phase factor is chosen so
that 〈�q| �X,�θ 〉 → δ(�q − �X) when �θ → 0 and 〈�q| �X,�θ 〉 →
(2π )−n/2 exp(i �q · �X) when �θ → π/2.

For an arbitrary function on phase space f (�q, �p) we
introduce the notation of the Radon transform of this function,

R[f (�q, �p)]( �X,�θ )

=
∫

f (�q, �p)

(2π )n

n∏
σ=1

δ(Xσ − qσ cos θσ − pσ sin θσ )dnq dnp.

(5)

In terms of the Wigner function [30] the tomogram w( �X,�θ,t)
is expressed by the Radon transform [31]:

w( �X,�θ,t)

= R[W (�q, �p,t)]( �X,�θ )

=
∫

W (�q, �p,t)

(2π )2n

n∏
σ=1

e−iησ (Xσ −qσ cos θσ −pσ sin θσ )dnη dnq dnp

=
∫

W (�q, �p,t)

(2π )n

n∏
σ=1

δ(Xσ − qσ cos θσ

−pσ sin θσ )dnq dnp, (6)

where the Wigner function W (�q, �p,t) is associated with the
density matrix ρ(�q,�q ′,t) in the coordinate representation by
the standard relations

W (�q, �p,t) =
∫

ρ(�q + �u/2,�q − �u/2,t)e−i �p·�udnu, (7)

ρ(�q,�q ′,t) = 1

(2π )n

∫
W

( �q + �q ′

2
, �p,t

)
ei �p·(�q−�q ′)dnp. (8)

Relation (6) can be reversed using the symmetry property of
the optical tomogram,

w( �X,�θ,t) = w((−1)kσ Xσ ,θσ + πkσ ,t),
(9)

kσ = 0,±1,±2, . . . .

After calculations we can write

W (�q, �p,t) = 1

(2π )n

∫ π

0
dnθ

∫ +∞

−∞

∫ +∞

−∞
w( �X,�θ,t)

×
n∏

σ=1

|ησ |eiησ (Xσ −qσ cos θσ −pσ sin θσ )dnη dnX. (10)

Thus, the tomogram w( �X,�θ,t) contains all the information
about the quantum state.

One can give the physical interpretation of the optical
tomogram (see, e.g., [32]) for an example classical particle.
If one considers the probability density of the particle state
on the phase space (q,p), one can obtain the marginal
probability distribution of only position q integrating the
probability distribution over momentum p. We can rotate
the reference frame axes in the phase space to get a new
rotated reference frame. Then the tomogram w(X,θ ) is the
probability distribution of the position X measured in the
reference frame in phase space with axes q ′, p′ rotated by
angle θ with respect to initial axes (q,p). For many degrees of
freedom the optical tomogram w(X1, . . . ,Xn,θ1, . . . ,θn) is a
joint probability distribution of the random position measured
each in its own reference frame, which is rotated by the angle
θi in the phase space of the system.

From this interpretation (we give an example for one degree
of freedom) simple formulas for moments of position and
momentum are as follows:

〈q̂k〉 =
∫

w(X,θ = 0)XkdX,

〈p̂k〉 =
∫

w(X,θ = π/2)XkdX.

The optical tomography of photon-added coherent states, even
and odd coherent states, and thermal states was discussed
in Ref. [33].

The evolution equation and the equation for stationary
states for the optical tomogram of the state of a quantum
system with a potential field were obtained in [34], along
with the Liouville equation with an arbitrary potential field in
the optical tomography representation. In [35] the evolution
equation for the optical tomogram of a quantum system
with an arbitrary spinless Hamiltonian was obtained. In [36]
the evolution equation of the optical tomogram of quantum
systems with an arbitrary quadratic Hamiltonian was solved,
and the optical propagator for such systems was found.
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III. THE CORRESPONDENCE RULES FOR PHYSICAL
OPERATORS IN THE OPTICAL TOMOGRAPHY

REPRESENTATION

Using relations (7) and (8) between the density matrix
ρ(�q,�q ′) and the Wigner function W (�q, �p) for any operator
Â acting on the density matrix, one can find the corresponding
operator in the Wigner-Weyl representation (Â)W acting on
the Wigner function. It is well known that (see, e.g., [32])

qσρ(�q,�q ′) ↔ (q̂σ )WW (�q, �p) =
(

qσ + i

2

∂

∂pσ

)
W (�q, �p),

q ′
σ ρ(�q,�q ′) ↔ (q̂ ′

σ )WW (�q, �p) =
(

qσ − i

2

∂

∂pσ

)
W (�q, �p),

∂ρ(�q,�q ′)
∂qσ

↔
(

∂

∂qσ

)
W

W (�q, �p) =
(

1

2

∂

∂qσ

+ ipσ

)
W (�q, �p),

∂ρ(�q,�q ′)
∂q ′

σ

↔
(

∂

∂q ′
σ

)
W

W (�q, �p) =
(

1

2

∂

∂qσ

− ipσ

)
W (�q, �p).

(11)

Using relation (6) between the Wigner function and the
optical tomogram one can find the correspondence rules for
the operators acting on the Wigner function and the optical
tomogram.

Let Â be an operator acting on the Wigner function. We
define the Radon transform of this operator R̂[Â]( �X,�θ ) as
follows:

R̂[Â]( �X,�θ ) w( �X,�θ ) = R[ÂW (�q, �p)]( �X,�θ ). (12)

For any operator Â acting on the density matrix one can
find the corresponding operator in the optical tomography
representation (Â)w acting on the optical tomogram. With
definition (12) it can be written as

(Â)w = R̂[(Â)W ]( �X,�θ ), (13)

where (Â)W is operator Â in the Wigner-Weyl representation.
Let us find the operator R̂[qi]( �X,�θ ), which is the Radon

transform of operator (12) of the product of ith coordinate
qi by the Wigner function W (�q, �p). For this we note that for
angle derivatives of the tomogram (6) we have (we restore the
dimensional constants)

∂

∂θi

w( �X,�θ ) = ∂

∂θi

R
[
W (�q, �p)

]
( �X,�θ ) = 1

(2πh̄)n

∫
W (�q, �p)

(
qi sin θi − pi

cos θi

miω0i

)

× δ′
(

Xi − qi cos θi − pi

sin θi

miω0i

) n∏
σ 
=i

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnp, (14)

where δ′ is the derivative of the Dirac δ function. For position derivatives of the tomogram we obtain the integral expression

∂

∂Xi

R[W (�q, �p)]( �X,�θ ) = 1

(2πh̄)n

∫
W (�q, �p)δ′

(
Xi − qi cos θi − pi

sin θi

miω0i

)

×
n∏

σ 
=i

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnp. (15)

We define the inverse derivative (antiderivative) of the tomogram by using the Heaviside step function 
(Xi − X′
i):[

∂

∂Xi

]−1

w( �X,�θ ) =
∫


(Xi − X′
i)[w( �X,�θ )]Xi=X′

i
dX′

i . (16)

With the help of (6) this antiderivative can be expressed as follows:[
∂

∂Xi

]−1

w( �X,�θ ) =
[

∂

∂Xi

]−1

R[W (�q, �p)]( �X,�θ ) = 1

(2πh̄)n

∫

(Xi − X′

i)W (�q, �p)

× δ

(
X′

i − qi cos θi − pi

sin θi

miω0i

) n∏
σ 
=i

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnpdX′

i . (17)

With the help of Eqs. (6), (14), and (17) we can write[
∂

∂Xi

]−1
∂

∂θi

w( �X,�θ ) =
[

∂

∂Xi

]−1
∂

∂θi

R
[
W (�q, �p)

]
( �X,�θ ) = 1

(2πh̄)n

∫

(Xi − X′

i)W (�q, �p)

(
qi sin θi − pi

cos θi

miω0i

)

× δ′
(

X′
i − qi cos θi − pi

sin θi

miω0i

) n∏
σ 
=i

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnpdX′

i

= 1

(2πh̄)n

∫
W (�q, �p)

(
qi sin θi − pi

cos θi

miω0i

) n∏
σ=1

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnp, (18)
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where we evaluated the integral over dX′
i . From the theory of

generalized functions of slow growth we know

Yiδ( �Y ) = Yi

n∏
σ=1

δ(Yσ ) = 0.

Substituting in this formula the argument

Yσ = Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

,

multiplying it by the Wigner function W (�q, �p), and integrating
the result over dnqdnp/(2πh̄)n, we will find

1

(2πh̄)n

∫
W (�q, �p)

(
Xi − qi cos θi − pi

sin θi

miω0i

)

×
n∏

σ=1

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnp = 0. (19)

Using formulas (6), (12), (18), and (19), after simple calcula-
tions we obtain

R[qiW (�q, �p)]( �X,�θ )

= R̂[qi]( �X,�θ ) w( �X,�θ )

=
{

sin θi

[
∂

∂Xi

]−1
∂

∂θi

+ Xi cos θi

}
w( �X,�θ ). (20)

Similarly, using formulas (6), (12), (14), (18), (19), and well-
known properties of the functions δ(Y ) and δ′(Y ), we can find

R[piW (�q, �p)]( �X,�θ )

= R̂[pi]( �X,�θ ) w( �X,�θ )

= miω0i

{
− cos θi

[
∂

∂Xi

]−1
∂

∂θi

+ Xi sin θi

}
w( �X,�θ ),

R
[

∂

∂qi

W (�q, �p)

]
( �X,�θ ) = R̂

[
∂

∂qi

]
( �X,�θ ) w( �X,�θ )

= cos θi

∂

∂Xi

w( �X,�θ ),

R
[

∂

∂pi

W (�q, �p)

]
( �X,�θ ) = R̂

[
∂

∂pi

]
( �X,�θ ) w( �X,�θ )

= sin θi

miω0i

∂

∂Xi

w( �X,�θ ). (21)

Here we used the notations R̂ [∂/∂qi]( �X,�θ ),R̂ [∂/∂pi]( �X,�θ )
in the sense of definition (12).

If the product of the direct and the inverse Radon transform
is unity, then the explicit form in the optical tomography
representation of the product of the operators is equal to
the product of these operators in the optical tomography
representation. Moreover, suppose we have a set of operators
{Âik} acting on the set of functions W (�q, �p) ∈ S2n, where
S2n is a space of well-behaved test functions (for instance,
Schwartz space [37]), and where, for any W (�q, �p) ∈ S2n, we
have ÂikW (�q, �p) ∈ S2n for any Âik ∈ {Âik}, then we can write

R
[∑

i

Ci

∏
k

(Âik)lkW (�q, �p)

]
( �X,�θ )

=
∑

i

Ci

∏
k

(
R̂

[
Âlk

ik

]
( �X,�θ )

)lkR[W (�q, �p)]( �X,�θ ). (22)

Using the formulas given in this paragraph, it is possible to
find the explicit form of any interesting practice operators in
the optical tomography representation.

Thus for position �̂q and momentum �̂p operators, with the
help of formulas (11), (13), (20), and (21), one can find their
components in the optical tomography representation:

(q̂i)w = R̂[(q̂i)W ]( �X,�θ ) = R̂
[
qi + i

2

∂

∂pi

]
( �X,�θ ) = sin θi

[
∂

∂Xi

]−1
∂

∂θi

+ Xi cos θi + i

2

h̄

miω0i

sin θi

∂

∂Xi

, (23)

(
p̂i

)
w

= −ih̄R̂
[(

∂

∂qi

)
W

]
( �X,�θ ) = miω0i

(
− cos θi

[
∂

∂Xi

]−1
∂

∂θi

+ Xi sin θi

)
− ih̄

2
cos θi

∂

∂Xi

. (24)

Multiplying these operators and taking into account property (22), we can find

(
q̂2

i

)
w

= (q̂i)w(q̂i)w = sin2 θi

[
∂

∂Xi

]−2 (
∂2

∂θ2
i

+ 1

)
+ Xi

[
∂

∂Xi

]−1 (
sin 2θi

∂

∂θi

− sin2 θi

)
+ X2

i cos2 θi

+ i
h̄

miω0i

{
sin2 θi

∂

∂θi

+ sin 2θi

2

(
1 + Xi

∂

∂Xi

)}
− 1

4

h̄2

m2
i ω

2
0i

sin2 θi

∂2

∂X2
,

(p̂2
i )w = (p̂i)w(p̂i)w = m2

i ω
2
0i

{
cos2 θi

[
∂

∂Xi

]−2 (
∂2

∂θ2
i

+ 1

)
− Xi

[
∂

∂Xi

]−1 (
sin 2θi

∂

∂θi

+ cos2 θi

)
+ X2

i sin2 θi

}

+ ih̄miω0i

{
cos2 θi

∂

∂θi

− sin 2θi

2

(
1 + Xi

∂

∂Xi

)}
− h̄2

4
cos2 θi

∂2

∂X2
,

(q̂i p̂i)w = (q̂i)w(p̂i)w = miω0i

{
− sin 2θi

2

[
∂

∂Xi

]−2 (
∂2

∂θ2
i

+ 1

)
+ Xi

[
∂

∂Xi

]−1 (
sin 2θi

2
− cos 2θi

∂

∂θi

)
+ X2

i

sin2 θi

2

}

− ih̄

{
Xi

2

∂

∂Xi

cos 2θi + sin 2θi

2

∂

∂θi

− sin2 θi

}
+ h̄2

8miω0i

sin 2θi

∂2

∂X2
, (25)
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where we denote the designation[
∂

∂Xi

]−2

w( �X,�θ )

=
[

∂

∂Xi

]−1 [
∂

∂Xi

]−1

w( �X,�θ )

=
∫


(Xi − X′′
i )
(X′′

i − X′
i)[w( �X,�θ )]Xi=X′

i
dX′′

i dX′
i

=
∫

(Xi − X′
i)
(Xi − X′

i)[w( �X,�θ )]Xi=X′
i
dX′

i . (26)

Similarly, we define higher orders of the operator [∂/∂Xi]−1.
Let us find the momentum operator in the optical tomog-

raphy representation. As known in the density matrix repre-

sentation l̂ = −ih̄[�q,∇�q], i.e., l̂1 = q̂2p̂3 − p̂2q̂3, l̂2 and l̂3 are
given by the relation for l̂1 by cyclic replacement of indices. In
the Wigner representation (hereafter the dimensional constants
are taken to be unity)

(l̂1)W = −i

{
q2

2

∂

∂q3
+ iq2p3 + i

4

∂2

∂q3∂p2
− p3

2

∂

∂p2

− q3

2

∂

∂q2
− iq3p2 − i

4

∂2

∂p3∂q2
+ p2

2

∂

∂p3

}
,

and the corresponding Wigner-Weyl symbol of this operator is

Wl̂1
(�q, �p) = q2p3 − q3p2.

In the optical tomography representation, after calculations
with the help of (23) and (24), we get

(l̂1)w = −i

{
1

2

(
sin θ2

[
∂

∂X2

]−1
∂

∂θ2
+ X2 cos θ2

)
cos θ3

∂

∂X3

+ i

(
sin θ2

[
∂

∂X2

]−1
∂

∂θ2
+ X2 cos θ2

)(
− cos θ3

[
∂

∂X3

]−1
∂

∂θ3
+ X3 sin θ3

)

+ i

4
sin θ2

∂

∂X2
cos θ3

∂

∂X3
+ sin θ2

2

∂

∂X2

(
cos θ3

[
∂

∂X3

]−1
∂

∂θ3
− X3 sin θ3

)}
+ i{ 2 ↔ 3}. (27)

Components (l̂2)w and (l̂3)w are given by (27) by cyclic
replacement of indices.

The creation and annihilation operators acting on the
density matrix in the coordinate representation have the form

â = 1√
2

(
q + ∂

∂q

)
, â† = 1√

2

(
q − ∂

∂q

)
. (28)

So, in the optical tomography representation we can write

(âi)w = exp(iθi)√
2

{
1

2

∂

∂Xi

+ Xi − i

[
∂

∂Xi

]−1
∂

∂θi

}
,

(29)

(â†
i )w = exp(−iθi)√

2

{
−1

2

∂

∂Xi

+ Xi + i

[
∂

∂Xi

]−1
∂

∂θi

}
.

For the number of quanta operator N̂i = â
†
i âi in ith mode

of an n-dimensional oscillator we have

N̂iρ(�q,�q ′) = â
†
i âiρ(�q,�q ′) = 1

2

{
q2

i − ∂2

∂q2
i

− 1

}
ρ(�q,�q ′),

and in the Wigner representation,

(N̂i)WW (�q, �p) = (â†
i )W (âi)WW (�q, �p)

= 1

2

{
q2

i − 1

4

(
∂2

∂p2
i

+ ∂2

∂q2
i

)

+ iqi

∂

∂pi

− ipi

∂

∂qi

+ p2
i − 1

}
W (�q, �p).

Using formulas (11) or taking the product of two operators
(29), we arrive at

(N̂i)ww( �X,�θ )

= (â†
i âi)ww( �X,�θ )

= 1

2

{[
∂

∂Xi

]−2 (
∂2

∂θ2
i

+ 1

)
+ X2

i

− Xi

[
∂

∂Xi

]−1

− 1

4

∂2

∂X2
i

+ i
∂

∂θi

− 1

}
w( �X,�θ ). (30)

The operator (N̂i)w acts on the functions wn( �X,�θ ) of the
harmonic oscillator according to the following formula:

(N̂i)wwni
( �X,�θ ) = niwni

( �X,�θ ), (31)

where ni is the number of quanta in the ith mode. Note that, at
a derivation from the correspondence rules we actually used,
the functions W (�q, �p) belong to a space of well-behaved test
functions S2n (for instance, Schwartz space [37]), on which
the space of the generalized functions of slow growth S ′2n can
be constructed.

IV. GENERAL FORMALISM OF THE SYMBOLS
OF OPERATORS

The relation between the density matrix and the tomogram
can be represented in the form

w( �X,�θ ) = Tr{ρ̂Û ( �X,�θ )},

ρ̂ =
∫

w( �X,�θ )D̂( �X,�θ )dnX dnθ,
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where

Û ( �X,�θ ) =
n∏

σ=1

δ(Xσ 1̂ − q̂σ cos θσ − p̂σ sin θσ ),

D̂( �X,�θ ) =
∫ n∏

σ=1

|ησ |
2π

eiησ (Xσ − q̂σ cos θσ − p̂σ sin θσ )dnη

are the dequantizer and quantizer operators, respectively.
These operators satisfy the orthogonality and completeness
conditions.

Tr{Û ( �X,�θ )D̂( �X′,�θ ′)}

=
n∏

σ=1

δ(Xσ cos(θσ − θ ′
σ ) − X′

σ )δ( sin(θσ − θ ′
σ )), (32)

∫
D̂ �̂q ′ �̂p ′( �X,�θ )Û �̂q �̂p( �X,�θ ) dnX dnθ = δ( �̂q − �̂q ′

)δ( �̂p − �̂p ′
).

(33)

Let us associate the symbol wÂ( �X,�θ ) with the arbitrary
operator Â by the definition

wÂ( �X,�θ ) = Tr{ÂÛ ( �X,�θ )}.
Taking into account the completeness condition (33), we can
write the inverse relation,

Â =
∫

wÂ( �X,�θ )D̂( �X,�θ )dnX dnθ.

The action of operator Â on the density matrix can be written
in the tomographic representation as the integral operator,

Tr{Âρ̂Û ( �X,�θ )} =
∫

wÂ( �X′,�θ ′)w( �X′′,�θ ′′)Tr{D̂( �X′,�θ ′)

×D̂( �X′′,�θ ′′)Û ( �X,�θ )}dnX′ dnθ ′ dnX′′ dnθ ′′.

The average value of operator Â is

Tr{Âρ̂} =
∫

w( �X,�θ )Tr{ÂD̂( �X,�θ )}dnX dnθ

=
∫

w( �X,�θ )w(d)
Â

( �X,�θ )dnX dnθ,

where we denote the designation for the dual symbol of
operator Â,

w
(d)
Â

( �X,�θ ) = Tr{ÂD̂( �X,�θ )}. (34)

With the help of (33) operator Â can be found from its dual
symbol:

Â =
∫

w
(d)
Â

( �X,�θ )Û ( �X,�θ )dnX dnθ.

The symbol wÂ( �X,�θ ) and the corresponding dual symbol
w

(d)
Â

( �X,�θ ) are associated by the relations

w
(d)
Â

( �X,�θ ) =
∫

wÂ( �X′,�θ ′)Tr{D̂( �X′,�θ ′)D̂( �X,�θ )}dnX′ dnθ ′,

wÂ( �X,�θ ) =
∫

w
(d)
Â

( �X′,�θ ′)Tr{Û ( �X′,�θ ′)Û ( �X,�θ )}dnX′ dnθ ′.

The dual symbol of the product of two operators Â and B̂

is equal to the star product with the corresponding kernel,

w
(d)
ÂB̂

( �X,�θ ) = w
(d)
Â

( �X,�θ ) ∗ w
(d)
B̂

( �X,�θ )

=
∫

K (d)( �X,�θ ; �X′,�θ ′; �X′′,�θ ′′)w(d)
Â

( �X′,�θ ′)

×w
(d)
B̂

( �X′′,�θ ′′)dnX′ dnθ ′ dnX′′ dnθ ′′, (35)

where

K (d)( �X,�θ ; �X′,�θ ′; �X′′,�θ ′′) = Tr{Û ( �X′,�θ ′)Û ( �X′′,�θ ′′)D̂( �X,�θ )}.
(36)

This formula can be transformed to a form suitable for practical
use as follows:

K (d)( �X,�θ ; �X′,�θ ′; �X′′,�θ ′′)

= 1

(2π )2n

∫ n∏
σ=1

δ(X′
σ − qσ cos θ ′

σ − pσ sin θ ′
σ )

× δ(X′′
σ − qσ cos θ ′′

σ − pσ sin θ ′′
σ )|ησ |

× exp{iησ (Xσ − qσ cos θσ − pσ sin θσ )}
× exp

{
iη2

σ

sin(θσ − θ ′
σ ) sin(θσ − θ ′′

σ )

sin(θ ′
σ − θ ′′

σ )

}
dnη dnq dnp.

(37)

From the definition of dual symbol (34) for operators 1̂, q̂,
and p̂ after calculations we arrive at

w
(d)
1̂

( �X,�θ ) = δ( sin(�θ − �θ0)), θ0i ∈ [0,π ],

w
(d)
q̂i

( �X,�θ ) = Xi cos θiδ(sin θi)δ( sin(�θσ 
=i − �θ0σ 
=i)),

w
(d)
p̂i

( �X,�θ ) = Xiδ(θi − π/2)δ( sin(�θσ 
=i − �θ0σ 
=i)),

w
(d)
q̂i p̂i

( �X,�θ ) =
[
X2

i δ(θi − π/4) − 1

2
X2

i δ(sin θi)

− 1

2
X2

i δ(θi − π/2) + i

2π

]
δ( sin(�θσ 
=i − �θ0σ 
=i)).

One can also find the symbols of other operators.

V. REPRESENTATION OF SYMBOLS OF OPERATORS IN
TERMS OF REGULAR GENERALIZED FUNCTIONS

The dual symbols of the operators for the optical
tomogram allow the representation in terms of regular
generalized functions. The dual symbol w

(d)
Â

( �X,�θ ) of some

operator Â defines the linear continuous functional on the
set of optical tomographic distribution functions w( �X,�θ ),
which are from the Schwartz space in �X and are infinitely
differentiable in �θ , belonging to the space of well-behaved
test functions. Thus, the set of w

(d)
Â

( �X,�θ ) actually defines
the set of generalized functions on this space. Obviously, the
equality of two symbols of one operator has to be defined
as the functional equality or the equality of two generalized
functions, i.e., two symbols are equal to each other when,
for any tomogram w( �X,�θ ) from the space of well-behaved
test functions, we have the equality of the values of the
corresponding functionals, denoted by these symbols. Thus
there is a set of symbols for any operator Â which are equal
to each other in the meaning of generalized functions.
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In the previous paragraph we have given the general
expression for the dual symbol of an arbitrary operator and
presented the singular forms of some operators. Singular forms
of operators are convenient for analytical calculations, but for
the numerical calculations and for processing experimental
data the representation of the symbols in the form of regular
generalized functions can be preferable.

If (Â)W is an arbitrary operator in the Wigner representation
with the existing average value, then the integral∫

R[(Â)WW (�q, �p)]( �X,�θ )dnX = 〈Â〉

does not depend on �θ . Taking into account the definition of the
dual symbol of the operator, we can write

〈Â〉 =
∫

w
(d)
Â

( �X,�θ )w( �X,�θ )dnXdnθ

= 1

πn

∫
R[(Â)WW (�q, �p)]( �X,�θ )dnXdnθ

= 1

πn

∫
R̂[(Â)W ]( �X,�θ )w( �X,�θ )dnXdnθ, (38)

where R̂[(Â)W ]( �X,�θ ) is an explicit form of operator Â in
the optical tomography representation which we found in
Sec. III. In turn, the continuous linear functionals (generalized

functions) of the form

1

πn

∫
dnXdnθR̂[(Â)W ]( �X,�θ ) w( �X,�θ )

acting on the set of optical tomograms of w( �X,�θ ), found with
the above rules, can be easily represented in the form of regular
generalized functions.

Let us give one more useful formula for the dual symbol of
the product of two operators. Let operators (Â)W and (B̂)W act
on the set W (�q, �p) ∈ S2n, such that for every W (�q, �p) ∈ S2n

the functions (Â)WW (�q, �p) and (B̂)WW (�q, �p) also belong to
S2n; then from (22) for the product of two operators and from
formula (38) we have equality:

〈ÂB̂〉 =
∫

w
(d)
ÂB̂

( �X,�θ )w( �X,�θ )dnXdnθ

=
∫

w
(d)
Â

( �X,�θ )R̂[(B̂)W ]( �X,�θ )R[W (�q, �p)]( �X,�θ )dnXdnθ

or

w
(d)
Â

( �X,�θ )R̂[(B̂)W ]( �X,�θ ) −→ w
(d)
ÂB̂

( �X,�θ ).

For example, let us regularize the functional
π−n

∫
R̂[(q̂i)W ]w( �X,�θ )dnXdnθ ; i.e., let us find a regular

symbol for operator q̂i in the optical tomography
representation. From (18), (23), and (38) we have the
following chain of equalities:

〈q̂i〉 =
∫

w
(d)
q̂i

( �X,�θ )w( �X,�θ )dnXdnθ = 1

πn

∫
(q̂i)ww( �X,�θ )dnXdnθ

= 1

πn

∫ {
sin θi

[
∂

∂Xi

]−1
∂

∂θi

+ Xi cos θi + i

2

h̄

miω0i

sin θi

∂

∂Xi

}
w( �X,�θ )dnXdnθ

= 1

πn(2πh̄)n

∫
sin θiW (�q, �p)

(
qi sin θi − pi

cos θi

miω0i

) n∏
σ=1

δ

(
Xσ − qσ cos θσ − pσ

sin θσ

mσω0σ

)
dnqdnpdnXdnθ

+ 1

πn

∫
Xi cos θiw( �X,�θ )dnXdnθ + 0. (39)

Integrating in this expression the integral with the Wigner
function over dnX and over dnθ , we can find

〈q̂i〉 = 1

2(2πh̄)n

∫
qiW (�q, �p)dnqdnp

+ 1

πn

∫
Xi cos θiw( �X,�θ )dnXdnθ

= 1

2
〈q̂i〉 + 1

πn

∫
Xi cos θiw( �X,�θ )dnXdnθ.

Thus we can write

w
(d)
q̂i

( �X,�θ ) = 2

πn
Xi cos θi .

Similarly, we find

w
(d)
p̂i

( �X,�θ ) = 2miω0i

πn
Xi sin θi,

w
(d)
q̂2

i

( �X,�θ ) = X2
i

πn
(1 + 2 cos 2θi),

w
(d)
p̂2

i

( �X,�θ ) = X2
i m

2
i ω

2
0i

πn
(1 − 2 cos 2θi),

w
(d)
q̂i p̂i

( �X,�θ ) = 2miω0i

πn
X2

i sin 2θi + ih̄

2πn
.

From (27) we can find the symbols of the components of the
angular momentum of the particle (we choose ω01 = ω02 =
ω03 = ω0):

w
(d)
l̂1

(X1,X2,X3; θ1,θ2,θ3) = 4mω0

π3
X2X3 sin(θ3 − θ2),

w
(d)
l̂2

(X1,X2,X3; θ1,θ2,θ3) = 4mω0

π3
X3X1 sin(θ1 − θ3),

w
(d)
l̂3

(X1,X2,X3; θ1,θ2,θ3) = 4mω0

π3
X1X2 sin(θ2 − θ1).
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From formulas (29) and (30) we can find

w
(d)
âi

( �X,�θ ) =
√

2

πn

√
miω0i

h̄
Xi(cos θi + i sin θi),

w
(d)

â
†
i

( �X,�θ ) =
√

2

πn

√
miω0i

h̄
Xi(cos θi − i sin θi),

w
(d)

â
†
i âi

( �X,�θ ) = w
(d)
N̂i

( �X,�θ ) = 1

πn

(
miω0i

h̄
X2

i − 1/2

)
.

It is also clear that

w
(d)
1̂

( �X,�θ ) = 1

πn
.

So, if we have the experimental data for the optical tomo-
gram (for instance, in one-dimensional case) in the form of
histogram {wex(Xk,θl)} normalized by the conditions∑

k

wex(Xk,θl)�X = 1,
∑
k, l

wex(Xk,θl)�X�θ = π,

where �X = Xk+1 − Xk is a step of the histogram and
�θ = θl+1 − θl is the distance between the phases at which
measurements are taken, then we can approximately find the
average value of observable Â from the formula

〈Â〉 ≈
∑
k, l

w
(d)
Â

(Xk,θl)wex(Xk,θl)�X�θ,

and the precision of the average value will be dependent on
the accuracy of the experimental tomogram wex(Xk,θl).

Having different forms of dual symbols of the same
operators, we can write test expressions for the experimentally
measured tomograms. Thus, for the q̂ quadrature we have

〈q̂〉 =
∫

X cos θδ(sin θ )wex(X,θ )dX dθ

= 2

π

∫
X cos θwex(X,θ )dX dθ. (40)

Similar test expressions can be written for the other operators.

VI. CONCLUSION

To summarize, we point out the main results of this work.
We obtained the correspondence rules and explicit expressions

for operators of physical quantities in the optical tomography
representation. We presented the general formalism for sym-
bols of operators in this representation. We found an explicit
expressions for the dual symbols of physical quantities in terms
of regular generalized functions, and we gave suggestions
for their use for experimental data processing in quantum
tomography.

The expressions for operators found in this work provide
the possibility of direct calculations of physical quantities from
the optical tomogram without transformation of the tomogram
into the Wigner function or density matrix. The developed
formalism can be used in the homodyne tomography of photon
states to study quantum phenomena with the help of the
probability distribution as the primary concept of state without
using the quasiprobability functions.

In Refs. [23,38–41] suggestions to check the quantum
inequalities such as quadrature uncertainty relations and differ-
ent types of entropic uncertainty relations in experiments with
homodyne detection of the photon states [19–22] in microwave
photon tomography [29] were proposed. For data processing in
this experiment one needs to evaluate the moments of photon
quadratures. To evaluate these moments one needs to integrate
the optical tomograms (probability distributions) with dual
tomographic symbols of the different degrees of the photon
quadrature components.

The evaluation can be done by using either regular form
of the generalized function corresponding to the photon
quadratures or the equivalent (in principle) singular form of
the generalized function. On the other hand due to unavoidable
inaccuracy of the measured data the regular form of the dual
tomographic symbols of the quadratures may provide essential
numerical advantages compared to using the singular form of
the dual tomographic symbols of physical observables. We
will study the application of the results obtained in this work
on the explicit form of the tomographic symbols to the analysis
of the experiments directed to check the quantum inequalities
in a future presentation.
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[31] J. Radon, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl.

69, 262 (1917).
[32] A. Ibort, V. I. Manko, G. Marmo, A. Simoni, and F. Ventriglia,

Phys. Scr. 79, 065013 (2009).
[33] Ya. A. Korennoy and V. I. Man’ko, Phys. Rev. A 83, 053817

(2011).
[34] Ya. A. Korennoy and V. I. Man’ko, J. Russ. Laser Res. 32, 74

(2011).
[35] Ya. A. Korennoy and V. I. Man’ko, J. Russ. Laser Res. 32, 338

(2011).
[36] Ya. A. Korennoy and V. I. Man’ko, J. Russ. Laser Res. 32, 153

(2011).
[37] I. M. Gelfand and G. E. Shilov, Generalized Functions (Aca-

demic, New York, 1964), Vol. 1.
[38] V. I. Manko, G. Marmo, A. Simoni, A. Stern, E. C. G. Sudarshan,

and F. Ventriglia, Phys. Lett. A 351, 1 (2006).
[39] V. I. Manko, G. Marmo, A. Simoni, and F. Ventriglia, Phys. Scr.

T147, 014021 (2012).
[40] S. N. Filippov and V. I. Manko, Phys. Rev. A 84, 033827 (2011).
[41] M. A. Man’ko and V. I. Man’ko, Found. Phys. 41, 330 (2011).

052119-9

http://dx.doi.org/10.1016/0375-9601(96)00107-7
http://dx.doi.org/10.1016/0375-9601(96)00107-7
http://dx.doi.org/10.1007/BF02550342
http://dx.doi.org/10.1007/BF02550342
http://dx.doi.org/10.1016/S0375-9601(97)00199-0
http://dx.doi.org/10.1134/1.558326
http://dx.doi.org/10.1134/1.558326
http://dx.doi.org/10.1016/S0370-2693(98)01033-8
http://dx.doi.org/10.1016/S0370-2693(98)01033-8
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://dx.doi.org/10.1103/PhysRevLett.77.2933
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/PhysRevA.78.021804
http://dx.doi.org/10.1103/PhysRevA.78.021804
http://dx.doi.org/10.1088/0031-8949/83/04/045001
http://dx.doi.org/10.1088/1464-4266/4/1/201
http://dx.doi.org/10.1088/1464-4266/4/1/201
http://arXiv.org/abs/arXiv:0910.3473v2
http://dx.doi.org/10.1016/j.physleta.2006.08.057
http://dx.doi.org/10.1016/j.physleta.2006.08.057
http://dx.doi.org/10.1007/BF00733376
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1088/0031-8949/79/06/065013
http://dx.doi.org/10.1103/PhysRevA.83.053817
http://dx.doi.org/10.1103/PhysRevA.83.053817
http://dx.doi.org/10.1007/s10946-011-9191-5
http://dx.doi.org/10.1007/s10946-011-9191-5
http://dx.doi.org/10.1007/s10946-011-9222-2
http://dx.doi.org/10.1007/s10946-011-9222-2
http://dx.doi.org/10.1007/s10946-011-9201-7
http://dx.doi.org/10.1007/s10946-011-9201-7
http://dx.doi.org/10.1016/j.physleta.2005.10.063
http://dx.doi.org/10.1088/0031-8949/2012/T147/014021
http://dx.doi.org/10.1088/0031-8949/2012/T147/014021
http://dx.doi.org/10.1103/PhysRevA.84.033827
http://dx.doi.org/10.1007/s10701-009-9403-9

