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Simulation of tunneling in the quantum tomography approach

Yu. E. Lozovik,* V. A. Sharapov,† and A. S. Arkhipov‡
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A method for the simulation of nonstationary quantum processes is proposed. The method is based on the
tomography representation of quantum mechanics, i.e., the state of the system is described by anonnegative
function ~quantum tomogram!. In the framework of the method one uses the ensemble of trajectories in the
tomographic space to represent evolution of the system~therefore direct calculation of the quantum tomogram
is avoided!. To illustrate the method we consider the problem of nonstationary tunneling of a wave packet. A
number of characteristics of tunneling, such as tunneling time, evolution of spatial and momentum distribu-
tions, and tunneling probability are calculated within the quantum tomography approach. Tunneling of a wave
packet of a composite particle, an exciton, is also considered; exciton ionization due to the scattering on the
barrier is analyzed.
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I. INTRODUCTION

Nowadays simulation of quantum systems is develope
a high extent~see, e.g., reviews@1,2#!. However, the simula-
tion methods that employ some generalization of the cla
cal trajectory concept, for example, path integral Mon
Carlo or Wigner dynamics, use nonpositively defined fun
tions ~density matrix, the Wigner function, etc.! to describe a
quantum state. This leads to some difficulties in converge
of corresponding integrals, especially harmful for the sim
lation of Fermi systems~the sign problem, see, e.g., Ref
@3,4# and references therein!. There is a hope that employin
a real non-negative function, describing the quantum st
one can avoid these difficulties.

A real non-negative function in phase space, comple
describing the quantum state, was proposed 60 years
~@5#, see also Refs.@1,6,7#!. During the last decade anothe
very interesting representation has been actively develo
the quantum tomography, operating with the ensemble
scaled and rotated reference frames, instead of the phase
space@8–13#. In the framework of this formalism the state
describing function~called marginal distribution or quantum
tomogram! is real and non-negative. The advantage is t
the quantum tomogram is aprobability distribution which
was shown to completely describe the quantum state@14,15#.
It is one of the reasons that why the quantum tomogra
has become so popular.

In this paper we propose a method for computer simu
tion of nonstationary quantum processes based on the tom
raphy representation of quantum mechanics and illustrate
way it works considering the problem of nonstationary tu
neling of a wave packet. Many simulation approaches
nonstationary quantum mechanics are based on the num
cal solution of the time-dependent Schro¨dinger equation.
There are also methods using the ensembles of classica
jectories to simulate quantum evolution. For example,
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method of ‘‘Wigner trajectories,’’ based on the Wigner re
resentation@16#, is well known~see, e.g., review@1# for de-
tails! and was recently successfully applied to investig
tunneling of a wave packet@17,18#.

The quantum tomogramw depends on the variable
$X,m,n%, whereX5mq1np, q,p are the coordinates an
momenta of the system, respectively, andm,n are the param-
eters of scaling and rotation of reference frame in the ph
space. The quantum tomogram is non-negative and norm
ized inX direction, therefore it can be interpreted as a dis
bution function of the valueX. In our method the ensembl
of trajectories in space$X,m,n% is introduced to describe th
quantum evolution. The trajectories are governed by the
namical equations obtained from the evolution equation
the quantum tomogram.

We demonstrate the method considering the nonstation
tunneling of a wave packet through a potential barrier. F
this problem we calculated tunneling times, which are
interest now, both for fundamental science~ e.g., what is the
time spent by an atom to tunnel from the trap?! and for
applications~electronic tunneling time is connected with th
operation rate of some nanostructure-based devices!. We also
analyzed the evolution of the wave packet in coordinate
momentum spaces in detail. Another demonstration was
signed to show that our method is not restricted to o
particle simulations, namely, we investigated the tunneling
a wave packet of a composite quasiparticle, an exci
~coupled electron and hole in semiconductor!, in a one-
dimensional nanostructure~quantum wire!. There are two de-
grees of freedom in this case. For this problem, in addition
the probability density evolution, we determined the pro
ability of ionization due to electron and hole scattering o
the barrier in different directions.

In Sec. II the description of the method is presented,
Sec. III the model problem is considered and the main res
for a tunneling wave packet are described. The exciton t
neling is considered in Sec. IV and the work is summariz
in Sec. V.

II. THE METHOD OF SIMULATION

The quantum tomogramw(X,m,n) is connected with the
density matrixr(q,q8) as @19,20#
©2004 The American Physical Society16-1
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r~q,q8!5E w~X,m,q2q8!ei [X2m(q1q8)/2]
dmdX

2p
, ~1!

w~X,m,n!5E e2 i [k(X2mq2np)1pu]

3rS q1
u

2
,q2

u

2Ddpdkdqdu

2p2
. ~2!

Consider the case of the particle with massm in a one-
dimensional space. If the Hamiltonian of the system is

H5
p2

2m
1V~q!, ~3!

then the integral transformation~2! applied to the time-
dependent evolution equation for the density matrix gives@8#

ẇ2
m

m

]w

]n
22

]V~ q̃!

]q S n

2

]

]XDw

12(
n51

`
~21!n11

~2n11!!

]2n11V~ q̃!

]q2n11 S n

2

]

]XD 2n11

w50,

~4!

where we use\51 andq̃ is given by

q̃52S ]

]XD 21 ]

]m
. ~5!

Equation~4! can be rewritten as

]w

]t
1

]w

]X
GX~X,m,n!1

]w

]m
Gm~X,m,n!1

]w

]n
Gn~X,m,n!

50, ~6!

where functionsG depend on quantum tomogram, its deriv
tives, and antiderivatives@the latter corresponding to term
with (]/]X)21 in Eq. ~4!#. Generalization for more variable
is straightforward because the form of the equations does
change. FunctionsG for the problem under investigation ar
given in Sec. III. The evolution equation rewritten as Eq.~6!
has the form of continuity equation for the quantum tom
gram

dw

dt
5

]w

]t
1

]w

]X
Ẋ1

]w

]m
ṁ1

]w

]n
ṅ50. ~7!

This equation is analogous to the continuity equation
classical distribution function and Liouville equation. As
known, the characteristics of Liouville equation are the cl
sical trajectories in phase space and they obey Hami
equations of motion. The quantum tomogram is non-nega
and we use it as a distribution function for trajectories in
space$X,m,n%, obeying the equations analogous to Ham
ton equations for the classical trajectories. From the comp
son of Eq.~6! with Eq. ~7! it is obvious that the trajectorie
are governed by the equations
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Ẋ5GX~X,m,n!,ṁ5Gm~X,m,n!,ṅ5Gn~X,m,n!. ~8!

The trajectories are used to avoid the direct calculati
of the distribution function~contrary to grid methods wher
the wave function is calculated at each point to solve num
cally Schrödinger equation!. Hence it is necessary to us
some approximation for the quantum tomogram and we
the local exponential approximation~as in Ref.@17# for the
Wigner function!

w~X,m,n!5w0e2[ $y2ya(t)%Aa(t)$y2ya(t)%1ba(t)$y2ya(t)%] ,
~9!

wherey5$X,m,n%, andya is the point under consideration
Parameters of this approximation are matrixAa and vector
ba , and some combinations of these parameters enter
evolution equation~4!, instead of the derivatives and an
tiderivatives of the quantum tomogram. Calculation of av
ageX,m,n and their average products allows to obtainAa
andba after this functionsG are known and dynamical equa
tions ~8! can be solved numerically.

We would like to emphasize that we use the local appro
mation ~9! only for the calculation of right-hand side of th
equations of motion~8!. The use of ensemble of trajectorie
to represent the quantum tomogram is equivalent to the
proximation of quantum tomogram as a set ofd functions,
eachd function corresponds to one trajectory. If the numb
of trajectories approaches infinity, the quantum tomogr
can be approximated by the set ofd functions with arbitrary
precision. This is analogous to what is conventionally do
in classical statistical mechanics for the distribution functi
in phase space. But unlike the classical statistical mecha
now the trajectories are not independent: the approxima
~9! is used to take the nonlocal character of quantu
mechanical evolution into account.

The validity of this approximation holds if the quantu
tomogram is smooth and the trajectories are close to e
other. For example, this approximation can become inapp
priate when one tries to consider a plane wave with wa
vectork: in this casew(X,m50,n51)5d(X2k). Approxi-
mation~9! does not work well for unbounded motion eithe
because the trajectories scatter with time. If there are
trajectories in the region around a given point, then the
proximation~9! will not reconstruct the quantum tomogram
due to lack of statistics.

We consider the tunneling of wave packets through a b
rier. Comparing our results with exact quantum computat
we see that approximation~9! is applicable for this problem
~see Secs. III and IV!. For example, considering the tunne
ing through the potential barrier from the well, we deal wi
the region of both bounded motion~in the well! and un-
bounded motion~beyond the barrier!. And still the approxi-
mation gives reasonable results~Sec. III!. The higher initial
energy, the stronger the penetration through the barrier. T
the evolution of most trajectories corresponds to unboun
motion, and the validity of Eq.~9! becomes poorer~see the
end of Sec. III!, in agreement with the discussion above. B
in general, the local approximation~9! works satisfactory
even for quite long time intervals~see Fig. 1!.
6-2
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To obtain any information about the system, we have
calculate some averages. Consider an arbitrary oper
A(q̂,p̂). Average^A& of corresponding physical quantity i
calculated in the tomographic representation of quantum
chanics as@21#

^A&5E A~m,n!eiXw~X,m,n!dXdmdn, ~10!

whereA(m,n) is the Fourier component of the Weyl symb
AW(q,p) of operatorA(q̂,p̂) ~see, e.g., Ref.@1#!:

A~m,n!5E AW~q,p!exp@2 i ~mq1np!#
dqdp

4p2
. ~11!

For the calculation of average values we use the follow
approximation of quantum tomogram:

w~X,m,n,t !5(
j 51

J

d„X2Xj~ t !…d„m2m j~ t !…d„n2n j~ t !…,

~12!

where the summation is made over allJ trajectories;
Xj (t),m j (t),n j (t) are the coordinates of thej th trajectory in
$X,m,n% space at timet. Such approximation corresponds
the use of the ensemble of trajectories. In the regions, wh
the value ofw(X,m,n) is small, trajectories are rare, an
where it is great, trajectories are accumulated. The more
jectories are used, the better the approximation~12! works. If
during the simulation the wave function has the form o
compact wave packet, even consisting of several dist
parts, approximation~12! holds, because in this case one h
the compact sets of trajectories providing good statist
This is the case for the problems considered, and there
the use of this approximation does not change results es
tially, in comparison with the exact quantum computati
~Secs. III and IV!.

For the operatorsA(q̂), depending onq̂ only, the expres-
sion for ^A& takes the following form:

FIG. 1. The dimensionless reaction probabilities~18! for three
values of initial mean coordinate of the wave packet:q0520.2,
20.3, and20.4 a.u. Solid lines are for the simulation in the qua
tum tomography approach, dashed lines are for the exact nume
solution.
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^A&5E A~X!w~X,m51,n50!dX, ~13!

where A(X) is the function corresponding to the operat
A(q̂) in coordinate representation,A(X)5A(q5X). The
method of calculation of an average^A(q̂)& at arbitrary time
t, with the approximation~12!, is quite simple. One just take
into account the trajectories with anyX and withm(t),n(t)
from the small region nearm51,n50 only, and performs a
summation ofA(X) over all such trajectories.

The developed method is similar to the well-know
method of Wigner trajectories~see Ref.@1# for review!,
where the ensemble of trajectories is introduced in the ph
space, with the Wigner function used as a quasidistribut
function. The quantum tomogram is defined in the spa
$X,m,n%, which is not as simple to understand as the ph
space used in the Wigner approach. On the other hand
quantum tomogram is a positive distribution function, wh
the Wigner function can be both positive and negative.
spite of these differences the two approaches are quite c
in general, and there are some difficulties common for b
methods. The discussion~see above! of the approximation
for the tomogram@such as Eq.~9!# is , in principle, appli-
cable to the method of Wigner trajectories as well. Anoth
important example is the discontinuity of the Wigner traje
tories, due to the fact that the trajectories are not indepen
as in classical statistical mechanics~see Ref.@22#!. Trajecto-
ries evolution depends on their local distribution. The sa
problem can arise in the quantum tomography approa
where the trajectories for the same reason are not inde
dent either. A possible alternative to Wigner function w
proposed in Ref.@22#, namely, the authors proposed to u
the Weyl transforms of some operators~the Wigner function,
up to the constant, is the Weyl transform of the density o
erator! instead of the Wigner function to generate the e
semble of trajectories. The same approach can be introdu
for the quantum tomography. Applying the transform~2! to
the matrix elements of an operatorA we obtain the symbol
wA(X,m,n). This function is not non-negative in general, b
in analogy with the Wigner trajectories one can u
wA(X,m,n) to develop some new ensemble of trajectori
Perhaps, as with the Weyl transforms’ trajectories@22#, it will
be more convenient to use the trajectories correspondin
wA in some cases. This problem needs certainly further
vestigation..

III. SIMULATION OF TUNNELING OF A WAVE PACKET

A. The model and calculated average values

We choose the same external potential as in Ref.@17#:

V~q!5
mv0

2q2

2
2

bq3

3
, ~14!

for further comparison of the results of simulation in qua
tum tomography approach with those obtained by ot
methods.

cal
6-3
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As the potential has only the second and third powers
coordinate, all its derivatives of order more than the th
vanish. Evolution equation in this case has the form\
51):

]w

]t
2

m

m

]w

]n
12F2

]V~ q̃!

]q S n

2

]

]XD1
1

6

]3V~ q̃!

]q3 S n

2

]

]XD 3Gw

50. ~15!

For the potential given by Eq.~14! the evolution equation
reads

]w

]t
2

m

m

]w

]n
1mv0

2n
]w

]m
2

bn3

12

]3w

]X3
1bnS ]

]XD 21 ]2w

]m2
50,

~16!

and the dynamical equations have the form

]X

]t
5

bn3

12

1

w

]2w

]X2
,

]m

]t
5mv0

2n2
bn

w S ]

]XD 21 ]w

]m
,

]n

]t
52

m

m
. ~17!

We use atomic units throughout,\5me5ueu51, where
me ande is the mass and the charge of a free electron. T
particle mass is taken to bem52000. The parameters of th
potential arev050.01 andb50.2981. The potential ha
minimum at q50 @V(0)50# and maximum atq50.6709
@V(0.6709)50.015#. Therefore here we consider the motio
of a particle in the potential well with infinite left wall an
the barrier of height 0.015 atq50.6709. This model prob
lem roughly describes nonstationary tunneling of an at
from the trap.

Initially the particle represented by the wave packet
located atq,0, its mean momentum is zero. The partic
can oscillate in the potential well and can tunnel or p
above the barrier. The probabilities of these processes
pend on the initial energy of the wave packet. We consi
the problem, where all parameters, except the initial m
coordinateq0 of the wave packet, are fixed~initial mean
momentum equals zero, dispersions of the wave packe
coordinate and momentum spaces are 0.3 and 1.6, res
tively!.

Equations~17! are solved numerically. As in Ref.@17# we
consider three values ofq0 : 20.2,20.3, and20.4. The tun-
neling characteristics of most interest are reaction probab
and tunneling time. The reaction probability is defined as

E
qa

`

uc~x,t !u2dx, ~18!

whereqa50.6709~the point where potential has the max
mum!, the maximum value of reaction probability is unit
02211
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The reaction probability shows what part of the wave pac
is currently beyond the barrier.

There are a lot of methods to determine tunneling ti
@23–36#, another important characteristic of tunneling. W
use here the approach where tunneling time is calculate
the difference ofpresence times~see Ref.@36# for a review!
at point xa and xb , located on the opposite sides of th
barrier:

tT~xa ,xb!5^t~xb!&2^t~xa!&. ~19!

The presence time at arbitrary pointx0 is

^t~x0!&5

E
0

`

tuc~x0 ,t !u2dt

E
0

`

uc~x0 ,t !u2dt

. ~20!

B. Reaction probability

In this section we present the results obtained within
method and compare them with the exact numerical solu
of Schrödinger equation. In Fig. 1 we present the reacti
probability ~18! dependence on time for three values of in
tial mean coordinate of the wave packetq0520.2, 20.3,
and 20.4, the corresponding mean energies of the w
packet are 0.75V0 , 1.25V0, and 2.0V0, respectively. Solid
lines represent the results of simulation in the quantum
mography~QT! approach and dashed lines correspond to
numerical solution of Schro¨dinger equation~exact quantum
computation!. Due to the increase of initial mean energy wi
the increase ofuq0u, the portion of high energy componen
in the wave packet grows. This leads to the larger portion
components, which pass through the barrier, either beca
their energy is greater than the height of the barrier, or du
tunneling. Therefore, with the growth ofuq0u, reaction prob-
ability becomes larger as one can see in Fig. 1. The t
evolution of reaction probability is qualitatively the same f
every q0. The components, which have passed through
barrier, cannot return, because forq.0.6709 potential di-
minishes with the growth of coordinate, and consequen
reaction probability cannot decrease with time. At first
grows rapidly due to transmission of components with
energy higher than the height of the barrier~comparison with
the classical solution of the same problem, for which on
transmission above the barrier is possible, convinces us in!.
Then the reaction probability continues to grow but slow
due to the tunneling. All these features are present for b
QT simulation and exact quantum computation.

In comparison with the exact computation, reaction pro
ability for the QT simulation is slightly higher. Note als
some difference in the character of an increase of the re
tion probability for QT simulation and exact solution: in th
former case the curves are not so smooth. These differe
stem from the finite number of trajectories used in QT sim
lation: for smaller number of trajectories~not shown! reac-
tion probability curves resemble stairs more evidently~this is
connected with the overestimation of the role of wave pac
oscillations in the well for the finite number of trajectories!,
6-4
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SIMULATION OF TUNNELING IN THE QUANTUM . . . PHYSICAL REVIEW A 69, 022116 ~2004!
and quantitative deviation from exact result is stronger. B
in general, for quite large number of trajectories, as for
case shown in Fig. 1, QT simulation results on reaction pr
ability are quite close to those obtained through the ex
quantum computation~compare also with the method o
Wigner trajectories in the work by Donoso and Marte
@17#!.

C. Evolution of the wave packet and tunneling times

In addition to the reaction probability we obtained a nu
ber of new qualitative and quantitative results, describing
detail the behavior of the wave packet during tunneling.
calculated also the tunneling times using the concept of
presence time.

The following discussion concerns the tunneling of t
wave packet with initial mean coordinateq0520.2. We
present the normalized probability densityuc(x)u2 in coordi-
nate space~Figs. 2–4! and uc(p)u2 in momentum space
~Figs. 5 and 6! for several successive time moments. In the
figures smooth lines show the shape of the wave packet
tained by means of exact quantum computation. Histogra
represent the result ofsingle QT run. One can consider man
runs with the same number of trajectories and average
probability density over all these runs to obtain smoot
picture. But here we would like to show what QT simulatio
can give in one run, in comparison with the exact quant
computation. Therefore the histograms~QT! fit the smooth
solid lines in Figs. 2–4~exact solution! not ideally, still the
resemblance is obvious.

FIG. 2. Probability density in coordinate space for QT simu
tion ~histograms! and exact solution~smooth lines!, at times t
50 a.u. ~left! and t5200 a.u.~right!. The barrier is at the poin
0.6709 a.u.,q0520.2 a.u.

FIG. 3. Probability density in coordinate space for QT simu
tion ~histogram! and exact solution~smooth line!, at time t
5300 a.u. The barrier is at the point 0.6709 a.u.,q0520.2 a.u.
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First, consider the probability densityuc(x)u2 in coordi-
nate space~Figs. 2–4!. One can see~Fig. 2! that initially the
wave packet has Gaussian form. It begins to move as a w
towards the potential minimum atx50 ~initial mean mo-
mentum is zero, but the potential inclines in that directio!,
passes that point, accelerates, and collides with the bar
During the motion the wave packet broadens~due to disper-
sion in momentum space, compare right and left plots in F
2! but the interaction with the barrier changes its form mo
substantially~Figs. 3 and 4!. The wave packet shrinks a little
some components pass through the barrier and transm
part can be seen beyond the barrier (x50.6709). Since the
transmitted part cannot return and accelerates~potential di-
minishes with the distance forx.0.6709), the enriching of
the wave packet by high-energy components must take p
~see below!.

All features described in the previous paragraph are co
mon for both the exact solution and QT simulation. The h
tograms in Figs. 2–4 fit the smooth lines representing
exact solution better for earlier times, but even after the
teraction with the barrier~Fig. 4!, resemblance is quite close
This shows that approximations~9! and ~12! are applicable
to the problem under consideration.

Now we proceed to the evolution of the wave packet
momentum space. To confirm our analysis concerning
acceleration of transmitted part of the wave packet,
present the probability densityuc(p)u2 in momentum space
in Figs. 5 and 6, at timest50 andt5400, respectively. As
the wave function is initially the Gaussian wave packet,
initial distributions are Gaussian both in coordinate and m
mentum space~compare Figs. 2 and 5!. But after the wave
packet has interacted with the barrier, the distribution in m

-

-

FIG. 4. Probability density in coordinate space for QT simu
tion ~histogram! and exact solution~smooth line!, at time t
5400 a.u. The barrier is at the point 0.6709 a.u.,q0520.2 a.u.

FIG. 5. Initial probability density in momentum space for Q
simulation~histogram! and exact solution~smooth line!. t50 a.u.
6-5
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LOZOVIK, SHARAPOV, AND ARKHIPOV PHYSICAL REVIEW A 69, 022116 ~2004!
mentum space changes substantially~Fig. 6!. The higher the
energy of incident particle, the greater the tunneling pr
ability. Therefore the barrier transmits mainly the wa
packet components with relatively high energy, serving as
energy selector. Transmitted part of the wave packet is ac
erated in the region of lowering potential beyond the barr
Due to this reason the components with high moment
arise, and the enriching of the wave packet by high-ene
components is observed.

Resemblance between the histograms~QT simulation!
and smooth solid lines~exact solution! is somewhat poore
for momentum distribution at large times (t5400, Fig. 6!
than for coordinate distribution~Fig. 4!. This is due to the
fact that one deals with finite number of trajectories and
to sample quite large interval in momentum space, beca
the transmitted part is permanently accelerated. Theref
with time, momentum distribution spreads and there are
many trajectories withm, n close enough tom50,n51 for
given momentump ~see Sec. III!. As for the considered
value of initial mean coordinateq0520.2 the initial energy
is not very large ('0.75V0, whereV0 is the height of the
barrier!, the wave packet stays mainly in the well~for the
time consideredt5400 only '20% of the wave packet is
transmitted, see Fig. 1! and the distribution in coordinat
space is more compact.

In Fig. 7 we present the dependence of tunneling time
initial mean position of the wave packet. Tunneling time
determined as the difference of presence times~20! for
points xa50.5(0.6709) andxb52.0(0.6709)~at x50.6709
potential has the maximum!. Tunneling is usually stronge
for the higher energy. Therefore, the increase ofuq0u ~and
corresponding increase of initial mean energy! leads to the
growth of the average speed of both the transmitted part
the wave packet as a whole. Transmitted part passes th
gion of the barrier~space between the pointsxa and xb)
faster, and so one expects that the increase inuq0u causes the
decrease in tunneling time. Indeed, the value of tunne
time drops with increasinguq0u. Results of QT simulation
~squares in Fig. 7! deviate from those of exact computatio
~circles! within the range of errors. The deviation is maxim
for large uq0u. Probably, this is because for largeuq0u the
wave packet leaves the well almost entirely~see Fig. 1!, and
the evolution of most trajectories corresponds to the
bounded accelerated motion. In such situation trajecto
scatter and approximation~12! does not represent the qua
tum tomogram as exactly as for smalleruq0u.

FIG. 6. Probability density in momentum space for QT simu
tion ~histogram! and exact solution~smooth line! at t5400 a.u.
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IV. SIMULATION OF THE EXCITON TUNNELING

The method described in Sec. II can be used to simu
the evolution of systems with more than one degree of fr
dom. In this section we demonstrate this possibility, cons
ering nonstationary tunneling of the composite particle,
citon, through the potential barrier in one-dimensional~1D!
semiconductor structure~quantum wire!. Exciton is a bound
state of electron and hole in semiconductor, therefore
deal with two degrees of freedom in contrast to Sec. III.

Possible experimental realization is as follows. Consi
quasi-one-dimensional semiconductor nanostructure wh
the motion is allowed only in one direction~quantum wire!.
Transverse motion is restricted due to strong confining b
riers. Potential barrier in the direction of allowed motion c
be located at some point of the quantum wire either us
semiconductor heterojunction or by gate. Using femtosec
laser pulses, we can form an excitonic wave packet, eithe
the quasiresonance pumping, or exciting an electron fr
valence band with the formation of a hole and subsequ
binding of two particles into exciton. Then the exciton
wave packet can move to the barrier and with the help
some detectors one can investigate scattering of the exc

Keeping this in mind let us construct the model for t
simulation. We use the parameters corresponding to G
for reference~the dielectric constant«512.5, the effective
masses of electron and hole areme50.07me

(0) and mh

50.15me
(0) , respectively, hereme

(0) is the electron mass in
vacuum!. Three-dimensional exciton in bulk GaAs is chara
terized by effective Bohr radiusa* '10 nm and binding en-
ergy EC* '4 meV. We use the unit of lengtha* , the unit of
massme , and\51. The corresponding units of energy an
time are E05\2/(mea* 2)'10 meV and t05mea* /\
'100 fs.

The energy spectrum and wave functions of relative el
tron and hole motion in 3D exciton are analogous to those
the hydrogen atom. But this is not the case for 1D excit
First, electron-hole effective interaction potential in quasi-1
structure is not Coulomb. Indeed, if the exciton size in t
direction of allowed motion is much greater than the wid
of the quantum wire~in the transverse direction!, then the
adiabatic approximation is applicable and 3D interaction

-

FIG. 7. Tunneling times with errors for several values of init
mean coordinate of the wave packetq0. Results of the QT simula-
tion ~squares! are compared with exact quantum computati
~circles!.
6-6
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tential must be averaged over the transverse degrees of
dom. Resulting 1D effective potential substantially diffe
from Coulomb~see Ref.@37# for the discussion of similar
model!. Second, corresponding energy spectrum and w
functions of electron and hole relative motion also change
comparison with the hydrogenlike states. We choose
wave function of the exciton ground state in Gaussian fo

The excitonic wave packet can be represented as a Ga
ian wave packet in the following center-of-mass coordina

C~xe ,xh ,t50!5
e2r 2/(2s)

~ps!1/4

e2(R2x0)2/(2S)1 iRp0

~pS!1/4
, ~21!

whereR5(mexe1mhxh)/(me1mh), r 5uxe2xhu, xe andxh
are electron and hole coordinates,x0 ,p0 and S are param-
eters; for them we used the following values:x05210, p0
53, S52, ands51.

The external potential is assumed to be zero everywh
except the region of barrier; we use the barrier of thicknes
nm, or 0.5 in accepted units. For simplicity we set the ba
ers for an electron and a hole to be the same and use
external and interaction potentials in quadratic form, cut
some distance. Then external potential is given by

Vext~x!55 C2Dx2 if uxu,AC

D
,

0 if uxu>AC

D
,

~22!

C is the height of the barrier, its width isAC/D50.5.
Interaction potentialVint is also assumed to be quadrat

Vint~r !55 Br22A if r ,AA

B
,

0 if r>AA

B
,

~23!

where r 5uxe2xhu. The potential~23! can describe, e.g.
electron-hole interaction in spatially indirect exciton, for e
ample in coupled quantum wires with a large interwire se
ration@38#. The initial wave function of relative motion, cho
sen to be Gaussian with unity dispersion, is negligible wit
one percent accuracy atr 53. Thus we choose the radius o
electron-hole interaction to beAA/B53.

We assume that we deal with a quasi-1D exciton w
binding energyEC51/8. In fact, for an exciton in quantum
wire, the wave function, binding energy, etc., are essenti
influenced by the properties of quantum wire. We also
glect the possibility of electron and hole recombination at
time scales studied.

Here we consider just an example and therefore us
relatively simple model. Still this model contains the ma
features of exciton tunneling, such as the possibility of io
ization, a barrier and an interaction with realistic streng
and size, the fact that a composite particle is the boun
state of two particles.
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For a stationary state the binding energy is2EC

5*C int* (r )Hint(r )C int(r )dr, where C int(r ) is the wave
function of relative motion. Then, from Eq.~23! and condi-
tion AA/B53 we haveA'18EC/17.

We do not use the variables of relative and center-of-m
motion, for QT simulation it is easier to deal with the initia
conditions and evolution equation in coordinates of elect
and holexe and xh . The potentials~22! and ~23! are qua-
dratic, that makes tomographic consideration of the prob
easier~see Sec. III!, discontinuity is neglected. On the othe
hand, in coordinatesxe and xh the evolution equations de
pend on trajectory distribution~see Sec. II!. Therefore the
problem considered allows to employ all techniques dev
oped for one degree of freedom, in the case of two degree
freedom.

The results of exciton tunneling simulation are presen
in Figs. 8–10. All parameters are fixed~see above!, except
the barrier heightC in Fig. 10. In Figs. 8 and 9 we depict th
evolution of probability density for an electron and a ho
the barrier heightC51. The solid lines in Figs. 8-9 and th
circles in Fig. 10 correspond to the simulation in quantu
tomography approach, while the dashed lines and the squ
represent the exact numerical computation. Unlike in Fi
2–6, here we show the results of several combined QT si
lation runs, therefore corresponding lines are relativ
smooth. Coincidence of QT and exact computation resu
initially very good, becomes poorer with time~Figs. 8 and
9!. But QT simulation reproduces the main features of ex
ton tunneling: wave packets broadening with time, shrink
near the barrier, dividing of the wave packets into two pa
~reflected and transmitted!. Note that QT results are quit
close to the exact ones even for long times (t530), despite
the fact that the motion is unbounded~see Sec. II!. Integral
values~in Fig. 10! obtained in QT approach also agree wi
the exact results. Larger discrepancies correspond to hi
barriers, which is probably due to larger inaccuracies, int
duced by neglecting the potential discontinuity in the case

FIG. 8. Probability density distributions in coordinate space
electron @re(x)# and hole@rh(x)# at times t50 and t510. QT
simulation~solid lines! is compared with the exact numerical sol
tion ~dashed lines!. All values are in units\5me* 5EC51, me* is
the electron effective mass andEC is the binding energy of the
exciton. The height of the barrierC51, width AC/D50.5.
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LOZOVIK, SHARAPOV, AND ARKHIPOV PHYSICAL REVIEW A 69, 022116 ~2004!
stronger interaction with the external potential.
The electron and hole wave packets begin their mot

from the pointx5210 and, shrinking near the barrier, a
partially reflected and transmitted. For the case presente
Figs. 8–9, about the half of wave packets is transmitted.
interesting question is the ionization probability of excito
induced by interaction with the barrier. If the electron a
hole are scattered in different directions on the barrier,
distance between them can become quite large, but, in p
ciple, there is a possibility that the exciton is not ioniz
after this scattering, because one of the particles can
‘‘pulled’’ beyond the barrier, toward the other particle, due
electron-hole attraction. On the other hand, the electron-h
interaction is cut at the distanceAA/B in our model. After
the interaction with the barrier the wave packet divides i
reflected and transmitted parts moving in opposite directio
For the time large enough, these two parts are well separa
the separation between them grows and the leakage thr
the barrier in both directions is negligible.PIon denote the
probability of ionization due to electron and hole scatter
in different directions. Then, the probability to find an ele
tron and a hole in different directions in respect to the barr
with e-h distance being larger thanAA/B, approachesPIon
in the limit t→`.

The probability of ionization due to electron and ho
scattering on the barrier in different directionsPIon is pre-
sented in Fig. 10, depending on the barrier heightC. For very
high and very low barriersPIon must approach zero, becau
in former case both particles are reflected and in the la
they both are transmitted. This trend is seen in Fig. 10,
PIon depending onC is maximal~other parameters are fixed
see above! at C'1. Note that these features are obvious
curves representing both QT simulation~circles! and exact
computation~squares!, and in general two curves are qui
close to each other.

FIG. 9. Probability density distributions in coordinate space
electron@re(x)# and hole@rh(x)# at timest520 andt530. QT
simulation~solid lines! is compared with exact numerical solutio
~dashed lines!. The same units and barrier parameters as in Fig
are used.
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V. CONCLUSION

We have developed a method of numerical simulation
quantum nonstationary processes based on tomographic
resentation of quantum mechanics and applied it to the p
lem of tunneling of the wave packet through the poten
barrier. The quantum tomogram is used in a sense as
distribution function for the ensemble of trajectories in spa
X,m,n, where X5mq1np is the coordinate measured i
rotated and scaled reference frame,q,p are coordinate and
momentum of the system, respectively. The trajectories
governed by the equations, resembling the Hamilton eq
tions of motion, therefore, some analog of molecular dyna
ics can be used. The Gaussian approximation allows to a
the direct calculation of the quantum tomogram. Instead
the quantum tomogram, the parameters of the approxima
are used in the equations of motion. Those parameters ca
obtained if one calculates the local moments of the ensem
of trajectories.

To demonstrate the method we considered the probl
of nonstationary tunneling of one- and two-particle wa
packets. Our method gave the results in agreement w
those obtained by the method of Wigner trajectories and
exact quantum computation.

Of course, we made only the first step toward develo
ment of this simulation method. The fact that the quant
tomogram is non-negative may lead to additional advant
of more rapid convergence, which may help to overcome
sign problem for fermionic systems. In the next work w
intend to consider the many-body problem for fermionic a
bosonic systems by means of the QT method.
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FIG. 10. Probability of exciton ionizationPIon due to electron
and hole scattering on the barrier in opposite directions versus
rier heightC. Circles and squares represent QT simulation and ex
solution, respectively. Considered is the barrier of thickness 0
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