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Simulation of tunneling in the quantum tomography approach
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A method for the simulation of nonstationary quantum processes is proposed. The method is based on the
tomography representation of quantum mechanics, i.e., the state of the system is describenhibggative
function (quantum tomograim In the framework of the method one uses the ensemble of trajectories in the
tomographic space to represent evolution of the systharefore direct calculation of the quantum tomogram
is avoided. To illustrate the method we consider the problem of nonstationary tunneling of a wave packet. A
number of characteristics of tunneling, such as tunneling time, evolution of spatial and momentum distribu-
tions, and tunneling probability are calculated within the quantum tomography approach. Tunneling of a wave
packet of a composite particle, an exciton, is also considered; exciton ionization due to the scattering on the
barrier is analyzed.

DOI: 10.1103/PhysRevA.69.022116 PACS nuntber03.65.Wj, 02.70.Ns, 03.65.Xp

[. INTRODUCTION method of “Wigner trajectories,” based on the Wigner rep-
resentatiorj16], is well known(see, e.g., revieyl] for de-
Nowadays simulation of quantum systems is developed téails) and was recently successfully applied to investigate
a high extentsee, e.g., reviewid,2]). However, the simula- tunneling of a wave packel7,18].

tion methods that employ some generalization of the classi-_ 1he quantum tomogranw depends on the variables
{X,u,v}, whereX=puq+vp, q,p are the coordinates and

cal trajectory concept, for example, path integral Monte ‘2 of th ; tivel 9 th
Carlo or Wigner dynamics, use nonpositively defined func-momenta of the system, respectively, and are the param-

tions (density matrix, the Wigner function, elo describe a eters of scaling and rotation of reference frame in the phase

uantum state. This leads to some difficulties in convergencgroce: The quantum tomogram is non-negative and normal-
9 C . 9eNCEeq inx direction, therefore it can be interpreted as a distri-
of corresponding integrals, especially harmful for the simu

. . ; “bution function of the valu&. In our method the ensemble
lation of Fermi systemsthe sign problem, see, e.g., Refs

. ) =" of trajectories in spacgX, u, v} is introduced to describe the
[3,4] and references thersirThere is a hope that employing qantum evolution. The trajectories are governed by the dy-

a real non-negative function, describing the quantum statg,gmical equations obtained from the evolution equation for
one can avoid thesg d|ff|cult|_es. . the quantum tomogram.

A real non-negative function in phase space, completely e demonstrate the method considering the nonstationary
describing the quantum state, was proposed 60 years ag@nneling of a wave packet through a potential barrier. For
([5], see also Refd1,6,7)). During the last decade another this problem we calculated tunneling times, which are of
very interesting representation has been actively developeéhterest now, both for fundamental scier(ce.g., what is the
the quantum tomography, operating with the ensemble ofime spent by an atom to tunnel from the traghd for
scaled and rotated reference framenstead of the phase applications(electronic tunneling time is connected with the
space/8-13). In the framework of this formalism the state- operation rate of some nanostructure-based deyvigésalso
describing functior(called marginal distribution or quantum analyzed the evolution of the wave packet in coordinate and
tomogram is real and non-negative. The advantage is thamomentum spaces in detail. Another demonstration was de-
the quantum tomogram is probability distributionwhich ~ signed to show that our method is not restricted to one-
was shown to completely describe the quantum §tatel5.  Particle simulations, namely, we investigated the tunneling of

It is one of the reasons that why the quantum tomographf® Wave packet of a composite quasiparticle, an exciton
has become so popular. (coupled electron and hole in semicondugtan a one-

In this paper we propose a method for computer Simu|adimensional nanostructuftguantum wirg. There are two de-

tion of nonstationary quantum processes based on the tomo rees of fre_e_dom in t_his case._For this probler_n, in addition to
raphy representation of quantum mechanics and illustrate t e._proba_bllllty Qensny evolution, we determined the_ prob-
way it works considering the problem of nonstationary tun—ab'l'ty OT lonization due.to e_Iectron and hole scattering off
neling of a wave packet. Many simulation approaches ir‘Fhe barrier in different _dlr_ectlons. . .
nonstationary quantum mechanics are based on the numeg- In Sec. 1l the descrlptlo_n of th? method is prese_nted, n
cal solution of the time-dependent Schimger equation. ec. lll the model problem is con5|dere_d and the main results
There are also methods using the ensembles of classical tri@r @ tunneling wave packet are described. The exciton tun-

jectories to simulate quantum evolution. For example, thelr:qelér;% |chonS|dered in Sec. IV and the work is summarized

. o . Il. THE METHOD OF SIMULATION
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Consider the case of the particle with massn a one-
dimensional space. If the Hamiltonian of the system is
p2
=—+
H=5—+V(a), 3
then the integral transformatio(2) applied to the time-
dependent evolution equation for the density matrix g[\&ds

wow  NQ) (v d
YTmor  “aq \2ax)"
o -1 n+1 6,2n+lv~ 9 2n+1
L2y D @(v o\ o
A=1(2n+ 1) g2t 129X
4
where we usédi=1 andq is given by
~ [\t .
== 5

Equation(4) can be rewritten as

élw—l—&WG X +&WG X +0WG X
E R X( 1/*’“!1/) ﬁ ,u( vlu'!V) 5 V( 1/*’“!1/)

=0, (6)
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X=Gx(X, s, v), =G (X, 1, 0), v=G (X, 1, v). (8)

The trajectories are used to avoid the direct calculations
of the distribution functioncontrary to grid methods where
the wave function is calculated at each point to solve numeri-
cally Schralinger equation Hence it is necessary to use
some approximation for the quantum tomogram and we use
the local exponential approximatiqas in Ref.[17] for the
Wigner function

W(X, My V) = Woe7 Y= Ya(O)}Aa({y = Ya(t)} +ba(t){y —ya(D}] ,

9

wherey={X,u,v}, andy, is the point under consideration.
Parameters of this approximation are mathix and vector

b,, and some combinations of these parameters enter the
evolution equation(4), instead of the derivatives and an-
tiderivatives of the quantum tomogram. Calculation of aver-
age X,u,v and their average products allows to obtaip
andb, after this functionss are known and dynamical equa-
tions (8) can be solved numerically.

We would like to emphasize that we use the local approxi-
mation (9) only for the calculation of right-hand side of the
equations of motior§8). The use of ensemble of trajectories
to represent the quantum tomogram is equivalent to the ap-
proximation of quantum tomogram as a setéfunctions,
eaché function corresponds to one trajectory. If the number
of trajectories approaches infinity, the quantum tomogram
can be approximated by the set®functions with arbitrary
precision. This is analogous to what is conventionally done
in classical statistical mechanics for the distribution function
in phase space. But unlike the classical statistical mechanics
now the trajectories are not independent: the approximation
(9) is used to take the nonlocal character of quantum-
mechanical evolution into account.

The validity of this approximation holds if the quantum
tomogram is smooth and the trajectories are close to each

where functionsG depend on quantum tomogram, its deriva- other. For example, this approximation can become inappro-
tives, and antiderivativefthe latter corresponding to terms priate when one tries to consider a plane wave with wave
with (9/9X) ! in Eq. (4)]. Generalization for more variables Vvectork: in this casew(X,u=0,v=1)= 6(X—k). Approxi-

is straightforward because the form of the equations does n#eation(9) does not work well for unbounded motion either,
change. Function6 for the problem under investigation are because the trajectories scatter with time. If there are few

given in Sec. lll. The evolution equation rewritten as E).

trajectories in the region around a given point, then the ap-

has the form of continuity equation for the quantum tomo-Proximation(9) will not reconstruct the quantum tomogram,

gram

dw Jw aw).( OW.  Iw. 0 .
= — X+ —p+ —v=0.
dt ot ox o aut T’ ™

due to lack of statistics.

We consider the tunneling of wave packets through a bar-
rier. Comparing our results with exact quantum computation
we see that approximatia®) is applicable for this problem
(see Secs. Il and IV For example, considering the tunnel-

This equation is analogous to the continuity equation foring through the potential barrier from the well, we deal with
classical distribution function and Liouville equation. As is the region of both bounded motiofin the well) and un-
known, the characteristics of Liouville equation are the clasbounded motior{beyond the barrigr And still the approxi-
sical trajectories in phase space and they obey Hamiltomation gives reasonable resu{ec. Ill). The higher initial
equations of motion. The quantum tomogram is non-negativenergy, the stronger the penetration through the barrier. Then
and we use it as a distribution function for trajectories in thethe evolution of most trajectories corresponds to unbounded
space{X,u,v}, obeying the equations analogous to Hamil-motion, and the validity of Eq(9) becomes poorefsee the

ton equations for the classical trajectories. From the compariend of Sec. II], in agreement with the discussion above. But
son of Eq.(6) with Eq. (7) it is obvious that the trajectories in general, the local approximatiof®) works satisfactory

are governed by the equations

even for quite long time intervalsee Fig. L
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1.0

2 (A)=fA(X)W(X,,u=1,v=O)dX, (13)

'S 08

2

a_‘-': 0.6} where A(X) is the function corresponding to the operator

S 0.4 A(Q) in coordinate representatiorA(Z()=A(q=X). The

= method of calculation of an averaga(q)) at arbitrary time

§ 0.2 t, with the approximatiori12), is quite simple. One just takes

(1'4 into account the trajectories with an¢and with u(t), v(t)
0.0, 1000 2000 3000 4000 from the small region negt=1,r=0 only, and performs a

time (a.u.) summation ofA(X) over all such trajectories.
The developed method is similar to the well-known

FIG. 1. The dimensionless reaction probabiliti@8) for three method of Wigner trajectorie¢see Ref.[1] for review),

| f initial i f th =—-0.2 . SO )
values of initial mean coordinate of the wave packgf=—02, \/po o the ensemble of trajectories is introduced in the phase
—0.3, and—0.4 a.u. Solid lines are for the simulation in the quan-

tum tomography approach, dashed lines are for the exact numeric?PaC?’ with the Wigner function ust?d as .a qua}SIdlsmbu“on
solution. unction. The quantum tomogram is defined in the space
{X,u,v}, which is not as simple to understand as the phase
pace used in the Wigner approach. On the other hand, the
antum tomogram is a positive distribution function, while
he Wigner function can be both positive and negative. In
spite of these differences the two approaches are quite close
Gh general, and there are some difficulties common for both
methods. The discussiofsee aboveof the approximation
for the tomogramsuch as Eq(9)] is , in principle, appli-
_ iX cable to the method of Wigner trajectories as well. Another
(A) f Alu,v)ETWX, vy dXdud, (10 important example is the discontinuity of the Wigner trajec-
tories, due to the fact that the trajectories are not independent
whereA(u,v) is the Fourier component of the Weyl symbol as in classical statistical mechanisge Ref[22]). Trajecto-
AWY(q,p) of operatorA(q,p) (see, e.g., Ref1]): ries evolution depends on their local distribution. The same
problem can arise in the quantum tomography approach,
where the trajectories for the same reason are not indepen-
A(MaV):J AW(q,p)exr[—i(,uq+vp)]dqdp. (11) dent eithe_r. A possible alternative to Wigner function was
472 proposed in Ref[22], namely, the authors proposed to use
the Weyl transforms of some operatdtise Wigner function,

For the calculation of average values we use the following!P to the constant, is the Weyl transform of the density op-

To obtain any information about the system, we have to>
calculate some averages. Consider an arbitrary operat
A(q,p). Average(A) of corresponding physical quantity is
calculated in the tomographic representation of quantum m
chanics ag21]

approximation of quantum tomogram: eratoy instead of the Wigner function to generate the en-
semble of trajectories. The same approach can be introduced
J for the quantum tomography. Applying the transfo(® to
W(X’“’V’t):,zl S(X—X;j(1) 8 — (1)) 8(w— (1)), the matrix elements of an operatdrwe obtain the symbol

wa(X, &, v). This function is not non-negative in general, but
(12 in analogy with the Wigner trajectories one can use
wa(X,u,v) to develop some new ensemble of trajectories.
where the summation is made over all trajectories; Perhaps, as with the Weyl transforms’ trajectof3), it will
X;j(t),uj(t),v;(t) are the coordinates of theh trajectory in  be more convenient to use the trajectories corresponding to
{X,u, v} space at time. Such approximation corresponds to w, in some cases. This problem needs certainly further in-
the use of the ensemble of trajectories. In the regions, whengestigation..
the value ofw(X,u,v) is small, trajectories are rare, and
where it is great, trajectories are accumulated. The more tra-
jectories are used, the better the approximatidh works. If Il SIMULATION OF TUNNELING OF A WAVE PACKET
during the simulation the wave function has the form of a A. The model and calculated average values
compact wave packet, even consisting of several distinct ) ,
parts, approximatiofil2) holds, because in this case one has e choose the same external potential as in Ref:

the compact sets of trajectories providing good statistics. Mw2q? b

This is the case for the problems considered, and therefore V()= o1 1 (14)

the use of this approximation does not change results essen- 2 3

tially, in comparison with the exact quantum computation

(Secs. lll and 1V. A A for further comparison of the results of simulation in quan-
For the operatoré\(q), depending om only, the expres- tum tomography approach with those obtained by other

sion for(A) takes the following form: methods.
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As the potential has only the second and third powers oflhe reaction probability shows what part of the wave packet
coordinate, all its derivatives of order more than the thirdis currently beyond the barrier.
vanish. Evolution equation in this case has the forfin (  There are a lot of methods to determine tunneling time
=1): [23-34, another important characteristic of tunneling. We
use here the approach where tunneling time is calculated as
the difference opresence timetsee Ref[36] for a review

W IwW N@ (v o\ 13V (v 93
ot moav T Taq \20X) 76 493 20X at point x, and x,, located on the opposite sides of the
g barrier:
=0. (15
tT(Xava):<t(Xb)>_<t(Xa)>- (19
For the potential given by Eql4) the evolution equation ) ) .
reads The presence time at arbitrary poiy is
oW  u IW , ow  br®Pw d\ " toPw f t|(xo,t)|2dt
T moar ML T e PN A o °
Jt. mdv 2 X i (txg))y=—7— (20
(16) J | ih(xo,1)|2dt
0
and the dynamical equations have the form
aX br® 1 dPw B. Reaction probability
12 wogx2’ In this section we present the results obtained within our
method and compare them with the exact numerical solution
3 byl 9\ ~1aw of Schralinger equation. In Fig. 1 we present the reaction
—M:mwéy— _(_) — probability (18) dependence on time for three values of ini-
at w\dX]  du tial mean coordinate of the wave packgj=—0.2, —0.3,
and —0.4, the corresponding mean energies of the wave
v _ M packet are 0.73,, 1.25/y, and 2.0/, respectively. Solid

- 7

gt m lines represent the results of simulation in the quantum to-
mography(QT) approach and dashed lines correspond to the
We use atomic units throughout,=m.=|e|=1, where  numerical solution of Scitbnger equatior{exact quantum
me ande is the mass and the charge of a free electron. Theomputation. Due to the increase of initial mean energy with
particle mass is taken to lme=2000. The parameters of the the increase ofqy|, the portion of high energy components
potential arewy=0.01 andb=0.2981. The potential has in the wave packet grows. This leads to the larger portion of
minimum atq=0 [V(0)=0] and maximum af=0.6709 components, which pass through the barrier, either because
[V(0.6709)=0.015. Therefore here we consider the motion their energy is greater than the height of the barrier, or due to
of a particle in the potential well with infinite left wall and tunneling. Therefore, with the growth ¢d|, reaction prob-
the barrier of height 0.015 a&f=0.6709. This model prob- ability becomes larger as one can see in Fig. 1. The time
lem roughly describes nonstationary tunneling of an atormevolution of reaction probability is qualitatively the same for
from the trap. every (o. The components, which have passed through the
Initially the particle represented by the wave packet isparrier, cannot return, because fgr-0.6709 potential di-
located atq<<0, its mean momentum is zero. The particle minishes with the growth of coordinate, and consequently
can oscillate in the potential well and can tunnel or passeaction probability cannot decrease with time. At first it
above the barrier. The probabilities of these processes derows rapidly due to transmission of components with the
pend on the initial energy of the wave packet. We considegnergy higher than the height of the barieomparison with
the problem, where all parameters, except the initial meathe classical solution of the same problem, for which only
coordinateq, of the wave packet, are fixednitial mean transmission above the barrier is possible, convinces us in it
momentum equals zero, dispersions of the wave packet ihen the reaction probability continues to grow but slowly,
coordinate and momentum spaces are 0.3 and 1.6, respafue to the tunneling. All these features are present for both
tively). QT simulation and exact quantum computation.
Equationg17) are solved numerically. As in Ref17] we In comparison with the exact computation, reaction prob-
consider three values gf: —0.2,—0.3, and—0.4. The tun-  ability for the QT simulation is slightly higher. Note also
neling characteristics of most interest are reaction probabilitsome difference in the character of an increase of the reac-
and tunneling time. The reaction probability is defined as tion probability for QT simulation and exact solution: in the
former case the curves are not so smooth. These differences
stem from the finite number of trajectories used in QT simu-
lation: for smaller number of trajectori€aot shown reac-
tion probability curves resemble stairs more evide(ithys is
whereqg,=0.6709(the point where potential has the maxi- connected with the overestimation of the role of wave packet
mum), the maximum value of reaction probability is unity. oscillations in the well for the finite number of trajectonies

" lpxt)]Pdx, (18)
da
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FIG. 2. Probability density in coordinate space for QT simula-  FIG. 4. Probability density in coordinate space for QT simula-
tion (histogram$ and exact solution(smooth liney at timest  tion (histogram and exact solution(smooth ling, at time t
=0 a.u. (left) andt=200 a.u.(right). The barrier is at the point =400 a.u. The barrier is at the point 0.6709 agy= —0.2 a.u.
0.6709 a.u.go=-0.2 a.u.

First, consider the probability density(x)|? in coordi-

and quantitative deviation from exact result is stronger. Bufiate spaceFigs. 2—4. One can seéig. 2 that initially the
in general, for quite large number of trajectories, as for thevave packet has Gaussian form. It begins to move as a whole
case shown in Fig. 1, QT simulation results on reaction probtowards the potential minimum a¢=0 (initial mean mo-
ability are quite close to those obtained through the exachentum is zero, but the potential inclines in that direction
guantum computatioricompare also with the method of Passes that point, accelerates, and collides with the barrier.

Wigner trajectories in the work by Donoso and MartensDuring the motion the wave packet broadédse to disper-
[17]). sion in momentum space, compare right and left plots in Fig.

2) but the interaction with the barrier changes its form more
substantiallyFigs. 3 and 4 The wave packet shrinks a little,
some components pass through the barrier and transmitted
In addition to the reaction probability we obtained a NUM-part can be seen beyond the barrier=0.6709). Since the
ber of new qualitative and quantitative results, describing inyansmitted part cannot return and accelerdpegential di-
detail the behavior of the wave packet during tunneling. Wepinishes with the distance for> 0.6709), the enriching of
calculated .also the tunneling times using the concept of thge wave packet by high-energy components must take place
The foIIowmg_ d|§c_u_SS|on concerns_the tunneling of the | features described in the previous paragraph are com-
wave packet with initial mean coordinatg,=—0.2. We  mon for both the exact solution and QT simulation. The his-
present the normalized probability densig(x)|? in coordi-  tograms in Figs. 2—4 fit the smooth lines representing the
nate space(Figs. 2-4 and |(p)|* in momentum space exact solution better for earlier times, but even after the in-
(Figs. 5 and pfor several successive time moments. In theseraction with the barriefFig. 4), resemblance is quite close.
figures smooth lines show the shape of the wave packet obrhis shows that approximatior(8) and (12) are applicable
tained by means of exact quantum computation. Histogramg, the problem under consideration.
represent the result single QT run One can consider many  Now we proceed to the evolution of the wave packet in
runs with the same number of trajectories and average thgomentum space. To confirm our analysis concerning the
probability density over all these runs to obtain smootheryeceleration of transmitted part of the wave packet, we
picture. But here we would like to show what QT simulation present the probability density/(p)|2 in momentum space
can give in one run, in comparison with the exact quantumy Figs. 5 and 6, at times=0 andt=400, respectively. As
computation. Therefore the histogra@T) fit the smooth  the wave function is initially the Gaussian wave packet, the
solid lines in Figs. 2—4exact solution not ideally, still the  jnitial distributions are Gaussian both in coordinate and mo-
resemblance is obvious. mentum spacécompare Figs. 2 and)5But after the wave
packet has interacted with the barrier, the distribution in mo-

C. Evolution of the wave packet and tunneling times

0.15
£l
St J 010
g <
E s
5 0.05
L 44 L !
0 [} 1 2
x (a.u.) 0.00
10 0 10
. L . . pau)
FIG. 3. Probability density in coordinate space for QT simula-
tion (histogram and exact solution(smooth ling, at time t FIG. 5. Initial probability density in momentum space for QT
=300 a.u. The barrier is at the point 0.6709 aqy=—0.2 a.u. simulation(histogram and exact solutiotismooth ling. t=0 a.u.
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0.15 60— :
3 }/i
<
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S
=253 0.3 0.2
FIG. 6. Probability density in momentum space for QT simula- e - e
tion (histogram and exact solutioiismooth ling at t=400 a.u. q, (a.u.)

mentum space changes substantiéfig. 6. The higher the FIG. 7. Tunneling times with errors for several values of initial
pace ges 0. 5. gh mean coordinate of the wave packgt Results of the QT simula-
energy of incident particle, the greater the tunneling prob-

. . . . tion (squareps are compared with exact quantum computation

ability. Therefore the barrier transmits mainly the wave (circlés}? g P d P

packet components with relatively high energy, serving as an

energy selector. Transmitted part of the wave packet is accel- |/ siMULATION OF THE EXCITON TUNNELING

erated in the region of lowering potential beyond the barrier.

Due to this reason the components with high momentum The method described in Sec. Il can be used to simulate

arise, and the enriching of the wave packet by high-energyhe evolution of systems with more than one degree of free-

components is observed. dom. In this section we demonstrate this possibility, consid-
Resemblance between the histograf@¥T simulation  ering nonstationary tunneling of the composite particle, ex-

and smooth solid linegexact solutioh is somewhat poorer ~citon, through the potential barrier in one-dimensioffD)

for momentum distribution at large time$=400, Fig. 6  Semiconductor structur@uantum wirg. Exciton is a bound

than for coordinate distributiofFig. 4). This is due to the state of electron and hole in semiconductor, therefore we

fact that one deals with finite number of trajectories and hasleal with two degrees of freedom in contrast to Sec. lll.

to sample quite large interval in momentum space, because Possible experimental realization is as follows. Consider

the transmitted part is permanently accelerated. Thereforéluasi-one-dimensional semiconductor nanostructure where

with time, momentum distribution spreads and there are ndthe motion is allowed only in one directidquantum wirg.

many trajectories withu, v close enough t=0,r=1 for Transverse motion is restricted due to strong confining bar-

given momentump (see Sec. I)l. As for the considered riers. Potential barrier in the direction of allowed motion can

value of initial mean coordinatg,= —0.2 the initial energy ~be located at some point of the quantum wire either using

is not very large €0.75V,, whereV, is the height of the semiconductor heterojunction or by gate. Using femtosecond

barrien, the wave packet stays mainly in the wéibr the  laser pulses, we can form an excitonic wave packet, either by

time considered=400 only ~20% of the wave packet is the quasiresonance pumping, or exciting an electron from
transmitted, see Fig.)land the distribution in coordinate Valence band with the formation of a hole and subsequent

space is more compact. binding of two particles into exciton. Then ;he excitonic
In Fig. 7 we present the dependence of tunneling time ofvave packet can move to the barrier and with the help of
initial mean position of the wave packet. Tunneling time isSOmMe detectors one can investigate scattering of the exciton.
determined as the difference of presence t”'(]E@) for ) Keeping this in mind let us construct the mO_de| for the
points x,=0.5(0.6709) andk,=2.0(0.6709)(at x=0.6709 simulation. We use the parameters corresponding tq GaAs
potential has the maximumTunneling is usually stronger for reference(the dielectric constanté =12.5, the effective
for the higher energy. Therefore, the increasdyl (and Masses of electron and hole ame,=0.07m{ and m,
corresponding increase of initial mean engrtpads to the =0.15m?, respectively, herenl”) is the electron mass in
growth of the average speed of both the transmitted part andacuun). Three-dimensional exciton in bulk GaAs is charac-
the wave packet as a whole. Transmitted part passes the rerized by effective Bohr radius* ~10 nm and binding en-
gion of the barrier(space between the poinis, and xy,) ergy EE~4 meV. We use the unit of lengid*, the unit of
faster, and so one expects that the increaggghcauses the massm,, and%=1. The corresponding units of energy and
decrease in tunneling time. Indeed, the value of tunnelingime are E,=#%/(m,a*?)~10 meV and to=m.a*/%
time drops with increasingq,|. Results of QT simulation ~100 fs.
(squares in Fig. )7deviate from those of exact computation  The energy spectrum and wave functions of relative elec-
(circleg within the range of errors. The deviation is maximal tron and hole motion in 3D exciton are analogous to those of
for large |go|. Probably, this is because for largg,| the the hydrogen atom. But this is not the case for 1D exciton.
wave packet leaves the well almost entiredge Fig. 1, and  First, electron-hole effective interaction potential in quasi-1D
the evolution of most trajectories corresponds to the unstructure is not Coulomb. Indeed, if the exciton size in the
bounded accelerated motion. In such situation trajectoriedirection of allowed motion is much greater than the width
scatter and approximatiofi2) does not represent the quan- of the quantum wirg(in the transverse directionthen the
tum tomogram as exactly as for smalleg|. adiabatic approximation is applicable and 3D interaction po-
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tential must be averaged over the transverse degrees of free- 04

dom. Resulting 1D effective potential substantially differs

from Coulomb(see Ref[37] for the discussion of similar

mode). Second, corresponding energy spectrum and wave X o2}

functions of electron and hole relative motion also change in o

comparison with the hydrogenlike states. We choose the

wave function of the exciton ground state in Gaussian form. 0.0
The excitonic wave packet can be represented as a Gauss-

ian wave packet in the following center-of-mass coordinates:

e—rz/(Za') e—(R—XO)Z/(ZS)+iRpO 3; 0.2
\P(X 1Xh1t:0): ] (21) <
€ (71,0,)1/4 (’775) 1/4
00 -10 o 10
whereR= (MgXe+ MpXp)/ (Me+Mp), I =|Xe—Xp|, Xe @andx, x

are e.lectron and hole Coordinatecg:,po and S ire param- FIG. 8. Probability density distributions in coordinate space for
eters; for them we used the following valueg= — 10, pg electron[p.(x)] and hole[pp(x)] at timest=0 andt=10. QT

=3,S=2, ando=1. o simulation(solid lineg is compared with the exact numerical solu-
The external potential is assumed to be zero everywhergon (dashed lines All values are in unitdi=m% =Ec=1, m is

except the region of barrier; we use the barrier of thickness e electron effective mass ari is the binding energy of the
nm, or 0.5 in accepted units. For simplicity we set the barri-exciton. The height of the barri€@=1, width '/C/D=0.5.
ers for an electron and a hole to be the same and use both

external and interaction potentials in quadratic form, cut at g, 5 stationary state the binding energy isEc

some distance. Then external potential is given by = [WE (1 Hin ()W) dr, where W, (r) is the wave
function of relative motion. Then, from E¢23) and condi-
C-DX® if X< \ﬁ tion VA/B=3 we haveA~18E/17.
D We do not use the variables of relative and center-of-mass

Vexd(X) (22 motion, for QT simulation it is easier to deal with the initial
0 if |x|= \[5 conditions and evolution equation in coordinates of electron
and holex, and x,,. The potentialg22) and (23) are qua-

. ) . ) ) dratic, that makes tomographic consideration of the problem
C is the height of the barrier, its width i§C/D=0.5. easier(see Sec. ), discontinuity is neglected. On the other

Interaction potentiaV;,, is also assumed to be quadratic: hand, in coordinateg, andx;, the evolution equations de-
pend on trajectory distributiofisee Sec. )l Therefore the

BrZ_A if r< \/E problem considered allows to employ all techniques devel-

B’ oped for one degree of freedom, in the case of two degrees of

Vint(1) A (23 freedom.
0 if r= \/: The results of exciton tunneling simulation are presented
B in Figs. 8—10. All parameters are fixédee above except
the barrier heigh€ in Fig. 10. In Figs. 8 and 9 we depict the
where r=|x,—x,|. The potential(23) can describe, e.g., evolution of probability density for an electron and a hole,
electron-hole interaction in spatially indirect exciton, for ex- the barrier heigh€C=1. The solid lines in Figs. 8-9 and the
ample in coupled quantum wires with a large interwire sepacircles in Fig. 10 correspond to the simulation in quantum
ration[38]. The initial wave function of relative motion, cho- tomography approach, while the dashed lines and the squares
sen to be Gaussian with unity dispersion, is negligible withinrepresent the exact numerical computation. Unlike in Figs.
one percent accuracy at3. Thus we choose the radius of 2—6, here we show the results of several combined QT simu-
electron-hole interaction to bgA/B=3. lation runs, therefore corresponding lines are relatively
We assume that we deal with a quasi-1D exciton withsmooth. Coincidence of QT and exact computation results,
binding energyE-=1/8. In fact, for an exciton in quantum initially very good, becomes poorer with tim&igs. 8 and
wire, the wave function, binding energy, etc., are essentiall®). But QT simulation reproduces the main features of exci-
influenced by the properties of quantum wire. We also neton tunneling: wave packets broadening with time, shrinking
glect the possibility of electron and hole recombination at thenear the barrier, dividing of the wave packets into two parts
time scales studied. (reflected and transmitt¢dNote that QT results are quite
Here we consider just an example and therefore use elose to the exact ones even for long timés 80), despite
relatively simple model. Still this model contains the mainthe fact that the motion is unboundégee Sec. )l Integral
features of exciton tunneling, such as the possibility of ion-values(in Fig. 10 obtained in QT approach also agree with
ization, a barrier and an interaction with realistic strengththe exact results. Larger discrepancies correspond to higher
and size, the fact that a composite particle is the boundeBarriers, which is probably due to larger inaccuracies, intro-
state of two particles. duced by neglecting the potential discontinuity in the case of
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FIG. 10. Probability of exciton ionizatioR,,, due to electron
and hole scattering on the barrier in opposite directions versus bar-

rier heightC. Circles and squares represent QT simulation and exact
X solution, respectively. Considered is the barrier of thickness 0.5.

o L . i The units are the same as in Fig. 8.
FIG. 9. Probability density distributions in coordinate space for

electron[ pe(x)] and hole[ p,(x)] at timest=20 andt=30. QT
simulation(solid lineg is compared with exact numerical solution
(dashed lines The same units and barrier parameters as in Fig. 8
are used.

V. CONCLUSION

We have developed a method of numerical simulation of
guantum nonstationary processes based on tomographic rep-
stronger interaction with the external potential. resentation of quantum mechanics and applied it to the prob-
The electron and hole wave packets begin their motiorlem of tunneling of the wave packet through the potential
from the pointx=—10 and, shrinking near the barrier, are barrier. The quantum tomogram is used in a sense as the
partially reflected and transmitted. For the case presented iffistribution function for the ensemble of trajectories in space
FIgS 8-9, about the half of wave packets is transmitted. Ar)(”u,,,, where X= png+vp is the coordinate measured in
interesting question is the ionization probability of exciton, rotated and scaled reference framep are coordinate and
induced by interaction with the barrier. If the electron andyomentum of the system, respectively. The trajectories are
hole are scattered in different directions on the barrier, th%overned by the equations, resembling the Hamilton equa-

distance between them can become quite large, but, in prif, g of motion, therefore, some analog of molecular dynam-

ciple, there is a possibility that the exciton is not Ionlzedics can be used. The Gaussian approximation allows to avoid

?fter tr,],'s scattering, bgcause one of the partl_cles can bt‘fﬁe direct calculation of the quantum tomogram. Instead of
pulled” beyond the barrier, toward the other particle, due to the quantum tomogram, the parameters of the approximation

electron-hole attraction. On the other hand, the electron—holgre used in the equations of motion. Those parameters can be
interaction is cut at the distancéA/B in our model. After  ained if one calculates the local moments of the ensemble
the interaction with the barrier the wave packet divides into.s trajectories.

reflected and transmitted parts moving in opposite directions. 14" yemonstrate the method we considered the problems
For the time large enough, these two parts are well separateg; nonstationary tunneling of one- and two-particle wave
the separation between them grows and the leakage throu%ckets_ Our method gave the results in agreement with

the barrier in both directions is negligibl®,,, denote the {456 obtained by the method of Wigner trajectories and by
probability of ionization due to electron and hole scatteringgy 4t quantum computation.

in different directions. Then, the probability to find an elec- ¢ coyrse. we made only the first step toward develop-
tron and a hole in different directions in respect to the barrierment of this simulation method. The fact that the quantum
with e-h distance being larger thaf\/B, approache® o, tomogram is non-negative may lead to additional advantage
in the limit t—oo. of more rapid convergence, which may help to overcome the
The probability of ionization due to electron and hole sign problem for fermionic systems. In the next work we
scattering on the barrier in different directioRg,, is pre-  intend to consider the many-body problem for fermionic and

sented in Fig. 10, depending on the barrier he{ghtor very  posonic systems by means of the QT method.
high and very low barrier®,,, must approach zero, because

in former case both particles are reflected and in the latter
they both are transmitted. This trend is seen in Fig. 10, and
Pion depending orC is maximal(other parameters are fixed,
see aboveat C~1. Note that these features are obvious for The authors are grateful to INTAS, RFBR, and the Min-
curves representing both QT simulati¢circles and exact istry of Science for financial support. A. A. also acknowl-
computation(squares and in general two curves are quite edges the financial help of the Dynasty Foundation and
close to each other. ICFPM. We thank V. I. Man’ko for fruitful discussions.
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