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Reconstruction of SU„1,1… states
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We show how group symmetries can be used to reconstruct quantum states. The method we propose is
presented in the context of the two-mode SU~1,1! states of the radiation field. In our scheme for SU~1,1! states,
the input field passes through a nondegenerate parametric amplifier and one measures the probability of finding
the output state with a certain number~usually zero! of photons in each mode. The density matrix in the Fock
basis is retrieved from the measured data by the least-squares method after singular value decomposition of the
design matrix followed by Tikhonov regularization. Several illustrative examples involving the reconstruction
of a pair coherent state, a Perelomov coherent state, and a coherent superposition of pair coherent states are
considered.
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I. INTRODUCTION

The problem of the reconstruction of quantum states w
first considered by Pauli@1# and Fano@2#. Since a quantum
system is completely described by its density matrix, the t
is essentially to reconstruct the density matrix of a syst
from information obtained by a set of measurements p
formed on an ensemble of identically prepared systems
that end, the seminal work of Vogel and Risken@3# showed
that for a single-modeoptical field, the histograms of
quadrature amplitude distributions measured byhomodyne
detection are just the Radon transform~or tomography! of
the corresponding Wigner function. One can thus obtain
Wigner function by taking the inverse Radon transform
the data. Finally, the density matrix in the position repres
tation is obtained from the Wigner function by Fourier tran
formation. This is the basis ofoptical homodyne tomograph
@3–6#. The technique was experimentally realized
Smitheyet al. @4#, who obtained the Wigner function and th
density matrix of vacuum and quadrature-squeezed state
a mode of the electromagnetic field by using balanced ho
dyne detection. Much progress has been achieved in
field over the past few years@6#. It is now well known, for
example, that one can determine the density matrix dire
from the measured quadrature distribution without having
evaluate the Wigner function. Additionally, parallel tomogr
phic schemes such as symplectic tomography@7# and photon
number tomography@8# have been suggested for the reco
struction of quantum states of the light field which can ev
be multimode@9#. Other quantum systems for which reco
struction procedures were proposed include one-dimensi
wave packets@10#, harmonic and anharmonic molecular v
brations@11#, motional states of atom beams@12#, motional
state of a trapped atom@13#, Bose-Einstein condensates@14#,
cyclotron states of a trapped electron@15#, atomic Rydberg
wave functions@16#, atoms in optical lattices@17#, systems
with a finite-dimensional state space~e.g., for spin! @18#, and
states in cavity QED@19,20#. Experimental reconstruction
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were reported for electronic angular momentum states of
drogen@21#, vibrational quantum states of a diatomic mo
ecule@22#, and motional states of a single trapped atom@23#.
Vasilyevet al. @24# have reported tomographic measureme
of joint photon statistics of the two-mode quantum state p
duced in parametric amplification.

While extensive work has been done on states of a t
mode field, there are very many physical situations in wh
the state to be reconstructed has certain group symmetry
example, in the process of downconversion, the two phot
are produced together. In this case, the difference in the p
ton number in the two modes is conserved and the state
the symmetry property of the SU~1,1! group. Clearly, one
could benefit considerably from the use of the group symm
try properties in the reconstruction of the state@25#. In a
previous publication, one of us discussed how the underly
SU~2! symmetry of a state can be utilized very efficiently f
its reconstruction@26#. In this paper, we consider reconstru
tion of states whose symmetry group is SU~1,1! @27#. The
method we propose is demonstrated in the context of t
mode states of the radiation field. Note that propagation
free space, characterized by the Hamiltonianap2, is also an
exmple of SU~1,1! symmetry and so is the more gener
Hamiltonian of the formap21bx21gxp, which can be
written as linear combinations of SU~1,1! generators. Thus
SU~1,1! ideas will directly be applicable to, for example
atom optics. Furthermore, a variety of SU~1,1! coherent
states for trapped ions@28# and for phonons@29# have been
constructed.

The plan of the paper is as follows. In Sec. II, we pres
a group theoretic perspective of a general reconstruction
cedure for quantum states. In Sec. III, we apply our meth
to reconstruct some important SU~1,1! states. The paper end
with concluding remarks in Sec. IV.

II. USING GROUP SYMMETRIES FOR STATE
RECONSTRUCTION

Let us first recall the principles of photon number tomo
raphy. Several workers have suggested a procedure whe
the initial state of the radiation field described by the dens
matrix, r (in), is displaced by different amounts,

-
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G. S. AGARWAL AND J. BANERJI PHYSICAL REVIEW A64 023815
r (in)→r (out)5D †~a!r (in)D~a!,

D~a!5exp~aa†2a* a!. ~1!

One then measures the distribution of photons in the
placed field. The photon count in the output field is used
reconstruct thes-ordered distribution function of the inpu
field. This method was very successfully used to measure
vibrational state of a trapped ion@23#. There is a related
suggestion in the context of cavity QED, which yields t
characteristic function of the radiation field@20#. In both of
these situations, one measures atomic populations with ra
high efficiency. Though a direct photon-counting measu
ment suffers from questions of poor efficiency of photod
tectors, there exist several proposals on how to overcome
problem@30#.

For the two-mode field with SU~2! symmetry, one can
displace the state using the corresponding unitary oper
for the SU~2! group. This has been shown to enable one
reconstruct the states of spin systems, states of polariza
etc. @26#. This is also closely related to a proposal in t
context of Bose-Einstein condensates@14#. The displacemen
of the state is physically realized~say! by using external
fields in the case of two-level atoms or spins. In the case
radiation fields, such a displacement is realized by opt
components such as waveplates@31#.

We next consider the case in which the underlying sy
metry of the state is of the SU~1,1! group. In a two-mode
realization of this group, the generators are

K15a†b†, K25ab, Kz5~a†a1b†b11!/2, ~2!

wherea†a2b†b5const5q ~say!. Without any loss of gen-
erality, one can assume thatq>0. In that case, the vacuum
state is given by the two-mode Fock stateuq,0& with the
property K2uq,0&50. The displacement operator for th
group is the well-known squeezing operator parametrized
a complex quantityz:

S~z!5exp~za†b†2z* ab!. ~3!

Acting on theu0,0& state, it produces the squeezed vacu
state

uz&05S~z!u0,0&. ~4!

It should be noted that even though we are dealing with
two-mode field, the underlying symmetry makesS(z) differ-
ent from the productD(a)D(b) of the displacement opera
tors. We can now proceed in the spirit of earlier constructio
for the Heisenberg-Weyl and the SU~2! groups. We conside
the operator defined by

r (out)5S †~z!r (in)S~z! ~5!

and the measurement of~say! q photons in modea and no
photons in modeb, i.e., the quantity
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p(out)~q,0!5^q,0ur (out)uq,0&

5^q,0uS †~z!r (in)S~z!uq,0&

5q^zur (in)uz&q[Q~q,z!, ~6!

where uz&q is defined in analogy to Eq.~4! with u0,0& re-
placed by uq,0&. We would now like to demonstrate how
measurements ofQ(q,z) for a range of values ofz can be
used to reconstruct the input stater (in). In this case, as indi-
cated in Fig. 1,r (out) can be obtained fromr (in) by passing
the input state through a nondegenerate parametric amp
whose action is described by the HamiltonianH5la†b†

1H.c., wherel is related to the nonlinear susceptibility. Th
operator S(z) is simply the evolution operator for thi
Hamiltonian withz5 ilt.

Using the disentangling theorem forS and substituting in
the expression forQ(q,z), we can write this probability as a
function of two auxiliary,experimentally controlledparam-
eters,

y5tanh2uzu, f5 i lnS z

uzu D . ~7!

After some algebra, one obtains

Q~q,z![Q~q,y,f!

5
~12y!q11

q! (
m,n50

` A~m1q!! ~n1q!!

m!n!

3ei (m2n)fy(m1n)/2rn,m~q!. ~8!

For the sake of clarity, we have used the notation^n
1q,nur (in)um1q,m&5rn,m(q). At this point, we make the
physically reasonable assumption that

rn,m~q!'0 for m,n.nmax ~9!

if nmax is suitably large@32#. Next we introduce the Fourie
transform of the probability data with respect to the pha
anglef:

gk~q,y!5E
0

2pdf

2p
eikfQ~q,y,f!, ~10!

and construct the quantity

f k~q,y!5
gk~q,y!y2k/2

~12y!q11
. ~11!

FIG. 1. Schematic of the reconstruction procedure.
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RECONSTRUCTION OF SU~1,1! STATES PHYSICAL REVIEW A64 023815
The construction is legitimate since the potentially singu
points y50 andy51 are inaccessible to the experiment
The pointy50 corresponds to ‘‘doing nothing’’ to the inpu
state, whereasy51 would correspond touzu ~and hence ei-
ther the pump amplitude or the duration of the experime!
being infinity.

The integration overf yields a Kroneckerd function and
one obtains a simple power series expansion forf k(q,y):

f k~q,y!5 (
m50

nmax2k

Bmk~q!rm1k,m~q!ym, ~12!

where

Bmk~q!5
1

q!
A~m1k1q!! ~m1q!!

m! ~m1k!!
. ~13!

The task now is to obtain the density-matrix elements fr
tabulated values off k(q,y). This can be done, in principle
by least-squares inversion@32,33#.

A. Least-squares method

We write f k(q,y) in the form f k(q,y)5( j 51
M aj

(M )f j (y),
where f j (y)5yj 21 are the basis functions,aj

(M )

5Bj 21,k(q)r j 211k, j 21(q) contain the unknown density
matrix elements, andM5nmax2k11. Here the superscrip
~M! denotes that the coefficients depend in general on
number of basis functions included in the approximation.
ỹ1 ,ỹ2 , . . . ,ỹN be a set of points at which the values
f k(q,y) are measured. We denote byf̃ i the measured value a
ỹi with an errorf̃ i2 f k(q,ỹi). It is generally assumed that th
error at different points is uncorrelated. The design matrixG
is an N3M matrix whose i j th element is given byGi j

5f j ( ỹi). We introduce two vectorsaW 5$a1 ,a2 , . . . ,aM%
andbW 5$ f̃ 1 , f̃ 2 , . . . ,f̃ N%. In the least-squares method, the c
efficientsaj are determined by minimizing the quantityx2

5uGaW 2bW u2.
Although the method of least squares is used extensi

in the literature, it will give meaningful values for the coe
ficients rm1k,m(q) only for small values ofm. This is so
because for large values ofm, the corresponding norma
equations become ill-conditioned. Hence we cannot exp
to solve them unless very high precision arithmetic is us
Even then, a slight change in the data~due, for example, to
round-off error! may change the solution significantly. Th
ill-conditioning can be traced to the fact that for large valu
of m, the basis functionsym are not really independent in th
sense that there will be little difference between terms
~say! y9 and y10 if the precision in the measured data
unable to resolve it. In such cases, one usually proceeds
the singular value decomposition~SVD! of the design matrix
in which one works directly with the design matrixG rather
than with GTG ~as in the least-squares method witho
SVD!. Thus the ill-conditioning becomes very reduced. T
design matrixG is written in the formG5USVT, whereU
is an N3M matrix, S is an M3M diagonal matrix with
diagonal elementss1 , s2, . . . , sM , and V is an M3M
02381
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orthogonal matrix so thatUTU5VTV5VVT5I M , the
M3M unit matrix. The matrixU consists ofM orthonormal-
ized eigenvectors associated with theM largest eigenvalues
of GGT, and the matrixV consists of the orthonormalize
eigenvectors ofGTG. The diagonal elements ofS are the
non-negative square roots of the eigenvalues ofGTG and are
called thesingular values. If uW i andvW i are thei th columns of
U andV, respectively, then the solution can be written asaW

5( i 51
M (uW i•bW /s i)vW i . The variance in the estimated param

etersaj can be written ass2(aj
(M ))5( i 51

M v j i
2 /s i

2 . It can thus
be seen that the error will be rather large for smalls i , and
dropping such terms will reduce the errors at the cost
increasing the mean-square deviation slightly. The colum
of V corresponding to smalls i identify the linear combina-
tion of variables, which contribute little towards reducingx2

but make a large contribution in the standard deviation. T
even if some of the singular values are not small enough
cause round-off problems, they can have a huge effect on
least-squares solution in the presence of noise.

A systematic way of giving lower weight to small singula
values is via Tikhonov regularization@34#. Tikhonov regular-
ization is a widely used technique for regularizing discre
ill-posed problems. One introduces a regularization para
eterl and filter factorsTi that depend onl and the singular
valuess i as

Ti5
s i

2

s i
21l2 'H 1 if s i@l,

s i
2/l2 if s i!l.

~14!

The regularized least-squares solution is given byaW l

5( i 51
M Ti(uW i•bW /s i)vW i . Comparison with the ‘‘naive’’ or un-

regularized least-squares solution (l50) shows that the fil-
ter factors essentially filter out the contributions toaW l corre-
sponding to the small singular values, while they leave
SVD components corresponding to large singular values
tually unaffected. A possible choice ofl is based on theL
curve, which is a log-log plot ofuaW lu2 versusuGaW l2bW u2 for
different values ofl. The points on the horizontal branc
correspond to large noise, whereas the points on the ver
branch correspond to large data misfit. The optimum cho
of l corresponds to points near the corner of theL curve
@35#.

III. RESULTS AND DISCUSSION

In this section, we will reconstruct the density matr
from a simulation of the corresponding probability data fo
pair coherent state@36#, a Perelomov@37# coherent state, and
a coherent superposition of pair coherent states.

In a real experiment, the parametersy andf can take only
a finite ~but large! number of values. In the absence of anya
priori knowledge about the input state, we choose a se
values off equally distributed between 0 and 2p @32,38#:
fs52ps/(Nf21), and a set of values ofy that are equis-
paced betweenymin50.01 andymax50.26: ỹn5ymin1(ymax
2ymin)(n21)/(N21). Then the Fourier transform with re
5-3
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G. S. AGARWAL AND J. BANERJI PHYSICAL REVIEW A64 023815
spect tof in Eq. ~10! is approximated by a discrete Fouri
transform

gk~q,ỹi !→
1

Nf
(
s50

Nf21

e2p iks/NfQ~q,ỹi ,2ps/Nf!. ~15!

Thus apart from truncation error due to the assumption~9!,
one will also have to deal with error due todiscretizationof
the variablesy and f. The systematic error due to pha
discretization can be reduced to zero by choosingNf
>2nmax11 @32,38#, whereas the error in the discretization

FIG. 2. Reconstruction of the diagonal density-matrix eleme
r i i of the pair coherent stateuF(3,0)& @see Eqs.~16! and ~17!# by
the least-squares method. The truncation parameter was s

nmax510. The singular valuess i , the values ofuuW i•bW u, and the

ratios uuW i•bW u/s i are plotted in~a!, ~b!, and ~c!, respectively. The
correspondingL curve for the problem is plotted in~d!. The regu-
larization parameterl has the values 1028 ~top left!, 1027, 1026,
1025, 1024, 1023 ~corner!, 1022, 1021, and unity~bottom right!.
In ~e!, we plot the bar charts for the exact values~shaded gray! of
the diagonal elements and the computed values~shaded black! with
l50.001.
02381
y is of orderN22 and can be made arbitrarily small by takin
a sufficiently large value ofN. We have setNf521, N
5101, andnmax510 in the calculations to follow. The dat
were simulated in the following way. We add to the exa
probability data f k(q,ỹi) an error term d f k(q,ỹi)

5RG„f k(q,ỹi)…Af k(q,ỹi)/t, whereR is a real random num-
ber uniformly distributed between21 and 1,G is a Gaussian
distribution with zero mean and unit variance@39#, and t

520 000 is the number of trials aty5 ỹi . All our calcula-
tions have been carried out using the software pack
MATHEMATICA . For the record, the random numbers we
generated with a seed value of 45.

A. Reconstruction of a pair coherent state

Pair coherent states of the radiation field can be gener
via the competition of four-wave mixing and two-photon a
sorption in a nonlinear medium@36#. Pair coherent states ca
also be realized for the motion of a trapped ion@28#. One

s

at

FIG. 3. Reconstruction of the density-matrix elementsrmn of
the pair coherent stateuF(3,0)& by the least-squares method. Th
truncation parameter was set atnmax510. ~a! Exact values;~b! re-
constructed values;~c! the absolute difference between the exa
and the reconstructed values.
5-4
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RECONSTRUCTION OF SU~1,1! STATES PHYSICAL REVIEW A64 023815
drives the ion with a laser on resonance and two other la
with appropriately chosen directions of propagation a
tuned to the second lower vibrational side band. In
Lamb-Dicke limit, the ion is found in a pair coherent stat

The state vector for a pair coherent state has the form

uF~j,p!&5N~j,p! (
n50

`
jn

An! ~n1p!!
un1p,n&,

N~j,p!5F (
n50

` uju2n

n! ~n1p!! G21/2

. ~16!

Herej is a complex parameter andp>0 is an integer. The
corresponding exact density matrix elements in the Fock
sis are given by

rn,m~p!5uN~j,p!u2
jnj* m

An! ~n1p!!m! ~m1p!!
. ~17!

Note that rm,n(p)5rn,m* (p), and for real values ofj the
density matrix is symmetric.

FIG. 4. Same as in Fig. 3 but for a Perelomov coherent s
C(0.5,0) @see Eqs.~18! and ~19!#.
02381
rs
d
e

a-

The least-squares reconstruction from the simulated d
fails in this case~some of the diagonal elements assume
solute values of the order of 103 or so! even with SVD when
the tolerance parameter is set to its default value of 102p12,
wherep is the machine precision. The failure is due toover-
fitting, that is, the use of a higher degree polynomial
f 0(0,ỹi) than necessary. As a result, the design matrix
comes ill-conditioned and some of the diagonal elements
S become very small. We mention parenthetically that
default tolerance removes none of these singular~or almost
singular! values.

For a better understanding of the problem, we plot
singular valuess i , the values ofuuW i•bW u, and the ratios
uuW i•bW u/s i in Figs. 2~a!, 2~b!, and 2~c!, respectively. It is seen
that the values ofuuW i•bW u reach a noise floor of about 1024

after i 53. The singular values continue to decay. Con
quently, the ratiosuuW i•bW u/s i increase rapidly. It is clear from
the plot that we cannot expect to obtain useful informat
from the singular values beyondi 53. In Fig. 2~d!, we plot
theL curve for various values of the regularization parame
l. The point on the corner of theL curve corresponds tol
50.001, which indeed lies betweens3 ands4. The regular-

te FIG. 5. Same as in Fig. 3 but for a coherent superposition of p
coherent statesuF(63,0)& @see Eq.~20!#.
5-5
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G. S. AGARWAL AND J. BANERJI PHYSICAL REVIEW A64 023815
ized solution is then given byaW l wherel50.001. The result
is in excellent agreement with the exact results as see
Fig. 2~e!. Proceeding as above, one can obtain a regular
solution for other values ofk as well. The reconstruce
density-matrix elements are in reasonable agreement with
exact results as seen in Fig. 3.

B. Reconstruction of a Perelomov coherent state

It is well known that Perelomov coherent states can
produced in parametric interactions. The state vector fo
Perelomov coherent state is given by

uC~h,q!&5
~12uhu2!(q11)/2

Aq!
(
p50

`

hpA~p1q!!

p!
up1q,p&,

~18!

where h is, in general, a complex parameter withuhu,1,
and q>0 is an integer. The corresponding exact dens
matrix elements in the Fock basis have the expression

rn,m~q!5
~12uhu2!q11

q!
A~n1q!! ~m1q!!

n!m!
hnh* m.

~19!

For q50 and real values ofh, the density matrix is
not only symmetric but also has the following addition
symmetries: rn12k,n(0)5rn1k,n1k(0) and rn12k11,n(0)
5rn1k11,n1k(0). Consequently, onlyf 0(0,y) and f 1(0,y)
need to be measured and modeled. We chooseq50, h
50.6, and setnmax510. Proceeding as before, we plot th
exact density-matrix elements in Fig. 4 along with the co
puted elements reconstructed by the least-squares me
with singular value decomposition. Once again, the rec
.
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struction is found to be satisfactory. Using the method
optical homodyne tomography, Vasilyevet al. @24# have, for
the first time, reconstructed the diagonal elements of the t
mode Perelomov coherent state produced by a param
amplifier. Their experiment also demonstrates how well
SU~1,1! symmetry holds in parametric amplification.

C. Reconstruction of a coherent superposition of pair
coherent states

Our final example is the reconstruction of a coherent
perposition of pair coherent statesuF(63,0)&:

uc&5 1
2 @ uF~3,0!&1uF~23,0!&]. ~20!

It can be easily shown that thenmth density-matrix elemen
of uc& will be nonzero only when bothn andm are even, in
which case its value will equal thenmth density-matrix ele-
ment of uF(63,0)&. As a result, onlyevenvalues ofk and
even powers of y appear in the modeling off k(0,y). As
shown in Fig. 5, satisfactory agreement is obtained betw
the exact and reconstructed density-matrix elements.

IV. CONCLUSION

We have suggested a scheme@40# for the reconstruction
of two-mode SU~1,1! states using parametric amplifiers. Th
probability of the output state being in a certain two-mo
number state is measured. The probability data are then
verted’’ to extract the density matrix of the input state
taking advantage of certain symmetries in the input state.
have shown that this inversion can be achieved by the le
squares method after singular value decomposition of
design matrix followed by Tikhonov regularization.
.
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