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Determination of entangled quantum states of a trapped atom

S. Wallentowitz, R. L. de Matos Filho, and W. Vogel
Arbeitsgruppe Quantenoptik, Fachbereich Physik, Universita¨t Rostock, Universita¨tsplatz 3, D-18051 Rostock, Germany

~Received 18 September 1996; revised manuscript received 17 March 1997!

We propose a method for measuring entangled vibronic quantum states of a trapped atom. It is based on the
nonlinear dynamics of the system that appears by resonantly driving a weak electronic transition. The proposed
technique allows the direct sampling of a Wigner-function matrix, displaying all knowable information on the
quantum correlations of the motional and electronic degrees of freedom of the atom. It opens possibilities for
testing fundamental predictions of the quantum theory concerning interaction phenomena.
@S1050-2947~97!03008-4#

PACS number~s!: 03.65.Bz, 42.50.Vk, 32.80.Pj
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I. INTRODUCTION

Entanglement is one of the most striking aspects of qu
tum mechanics@1,2#. In classical physics, two interactin
systems retain their individuality during the interaction pr
cess and become completely independent of each other
their coupling has been switched off. By way of contra
quantum theory predicts a completely different behavior
interacting systems. When two quantum systems are mad
interact, their identities become in the course of time m
and more entangled, so that a state vector description of
system is in general precluded. They build an entang
composite system, whose state vector cannot be sepa
into a product of the states of the subsystems. More surp
ing, the entanglement is preserved even after switching
the interaction, so that a measurement on one system
affect the other one. The individual systems can be cha
terized by~reduced! density matrices. However, even whe
the reduced density matrices of both subsystems are kno
important information on the physics of their interaction a
the related entanglement is lost.

Recently, entangled quantum states of an electronic
tem and a harmonic oscillator have been realized w
trapped atoms@3# and in cavity QED@4#. The signatures of
the entanglement have been partially demonstrated by q
tum measurements. The determination of the full quant
statistical information of such quantum states, however,
quires new types of quantum measurements. Moreover,
interesting in this context that with both types of systems
Jaynes-Cummings model@5# and its nonlinear trapped-atom
counterpart @6# could be realized@7,8#. In the Jaynes-
Cummings interaction the quantum correlation between
interacting systems has been predicted to show surpri
features@9#. In all these cases methods for determining
full information on the quantum state of entangled syste
are desired for getting more insight into interaction pheno
ena in the quantum world.

Several approaches have been proposed for determ
the complete information on the quantum state of sin
quantum systems. In particular, homodyne tomography
been established for optical fields@10#. Further simplifica-
tions of the method have been introduced, including the
rect statistical sampling of the density matrix in fiel
strength~quadrature! representation@11–13#, photon-number
561050-2947/97/56~2!/1205~7!/$10.00
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representation@14#, and symplectic tomography@15#. To-
mographic methods have also been realized for molec
vibrations@16# and proposed for reconstructing the motion
quantum state of trapped atoms@17#. Alternatively, phase-
space distributions can be determined by measuring the n
ber statistics of the quantum state of interest, after introd
ing appropriate coherent displacements@18#. A method of
the latter type has recently been used to reconstruct the
tional state of a trapped atom@19#. For quantum systems
undergoing a Jaynes-Cummings type dynamics@5#, such as
high-Q cavity fields@20,8# or trapped atoms@21,6,7#, various
methods have been considered to study the quantum s
tics of the bosonic subsystem~the field or the center-of-mas
motion!, cf. @22–24,19#. All these methods, however, giv
no insight into the entanglement of quantum systems.

In this contribution we propose a method for determini
entangled vibronic quantum states of a trapped atom. In S
II of this paper we introduce a Wigner-function matri
which contains the full information on the composite syste
under study. After a brief discussion of its properties w
show that it can be determined via measurements of
tangled, motional number statistics. In the following secti
we present a concrete scheme for measuring those quant
It relies on the nonlinearities appearing in the motional d
namics of the trapped atom interacting with laser lig
which have been predicted for atomic localizations beyo
the Lamb-Dicke regime@6# and confirmed in recent exper
ments@7#. By monitoring the electronic dynamics, combine
with coherent displacements of the motional subsystem,
can perform a direct sampling of the Wigner-function mat
of the vibronic state. In Sec. IV we present a numerical sim
lation of the reconstruction of the Wigner-function matr
and briefly discuss the practical aspects of our method
summary and some conclusions are given in Sec. V.

II. CHARACTERIZATION OF ENTANGLED
QUANTUM STATES

The motional quantum state of a trapped atom is usu
described by a density operatorr̂, which is an operator in the
Hilbert spaceHcm of the motion of the atom in the trap. T
get a phase-space description of the motional state of
atom one is led to quasiprobability distributions such as,
example, the Wigner function. This function can be obtain
1205 © 1997 The American Physical Society
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1206 56S. WALLENTOWITZ, R. L. de MATOS FILHO, AND W. VOGEL
from the density operator as follows@25,13#

W~a!5^d̂~a2â!&5 Tr@ r̂d̂~a2â!#, ~1!

where the operator-valued delta functiond̂(a2â) is the
Fourier transform of the displacement opera
D̂(a)5exp(aâ†2a* â) and reads as@25#

d̂~a2â!5
1

pE d2jD̂~j!eaj* 2a* j

5
2

p
D̂~a!~21! â†âD̂†~a!. ~2!

Equation~1! can be inverted to get the density operator o
of the Wigner function

r̂5E d2aW~a!d̂~a2â!, ~3!

so that the knowledge ofW(a) is equivalent to the knowl-
edge of the motional density operatorr̂.

A. Wigner-function matrix

Even though the Wigner functionW(a) displays all the
obtainable knowledge about the motional state of the atom
gives no information on its electronic degrees of freedo
For a complete description of the atomic state — i.e., incl
ing the electronic degrees of freedom — one has to gene
ize the concepts leading to the definition of the Wigner fu
tion. For this purpose we introduce the density operator%̂ of
the whole system, which is now an operator in the prod
space of motional and electronic Hilbert spacesHcm^Hel .
The reduced density operators for the motional and e
tronic subsystems can be obtained by taking the trace
the Hilbert spaces of the electronic system~el! and the
center-of-mass motion~cm!, respectively,

r̂5Trel@%̂#, ŝ5Trcm@%̂#. ~4!

We now define a Wigner-function matrix describing t
complete quantum state of the trapped atom by generali
Eq. ~1!,

Wi j ~a!5^d̂ i j ~a2â!&5Tr@%̂ d̂ i j ~a2â!#, ~5!

where d̂ i j (a2â) is now an operator in the product spa
Hcm^Hel and is defined by

d̂ i j ~a2â!5Âj i d̂~a2â!. ~6!

Here we have used the electronic flip operatorsÂj i 5u j &^ i u,
which describe transitions from the electronic stateu i & to the
state u j &. In close analogy with the case of the motion
subsystem~3!, the density operator of the composite syste
can be obtained from this Wigner-function matrix as

%̂5(
i j

E d2aWi j ~a!d̂ j i ~a2â!, ~7!
r
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showing that the complete information on the quantum s
of the atom is contained in the Wigner-function matr
Wi j (a).

B. Properties of the Wigner-function matrix

Let us now discuss some properties of the Wign
function matrix Wi j (a). It is easy to see that its diagona
elementsWii (a) represent the Wigner functions of the co
ditioned density operators%̂ i i correlated to the electronic
stateu i &. More precisely, this means that if one would me
sure the electronic state of the trapped atom to be in s
u i &, the corresponding~unnormalized! conditioned Wigner
function of the motional subsystem would beWii (a). The
norm of this conditioned Wigner function is simply the o
cupation probabilitys i i of the electronic stateu i &, whereas
the norm of the off-diagonal elementsWi j (a) ( iÞ j ) repre-
sents the electronic coherence

E d2aWi j ~a!5Tr@Âj i %̂#5s i j . ~8!

Moreover, from Eqs.~5! and ~6! it is seen that the Wigner
function matrix is Hermitian

Wi j ~a!5Wji* ~a!, ~9!

so that in order to have the full information on the quantu
state under consideration, it is sufficient to know the re
valued diagonal elements of the Wigner-function mat
Wii (a) and the real and imaginary parts of the off-diagon
elementsWi j (a) ( i , j ).

If one measures the electronic state to be in an arbitr
superposition

uc&5(
i

c i u i &, ~10!

the conditioned density matrix of the motional subsystem

r̂ ~ uc&)5Trel@ uc&^cu%̂#5(
i j

c i* c j %̂ i j . ~11!

The Wigner function of this motional quantum state can n
be represented in terms of the Wigner-function matrix~5!

W~ uc&)~a!5(
i j

c i* c jWi j ~a!. ~12!

This result shows that the off-diagonal elements of
Wigner-function matrix, which are in general complex va
ued, contain the information on the electronic coheren
and the corresponding motional states, which are entan
with these coherences.

On the other hand, if one has no information about
electronic state of the atom, the density operator of the m
tional subsystem is given by

r̂5Trel@%̂#5(
i

%̂ i i . ~13!
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The Wigner function of this reduced density operator re
as

W~a!5(
i

Wii ~a!, ~14!

and is simply the trace of the Wigner-function matrix.
In Fig. 1 we show an example for the Wigner-functio

matrix of an entangled state corresponding to the so-ca

FIG. 1. Wigner-function matrixWi j (a) of the entangled vi-
bronic quantum stateuc& @cf. Eq. ~15!# with b52.
s

d

‘‘Schrödinger-cat’’ states. The quantum state conside
here has been recently prepared experimentally with
trapped atom by Monroeet al. @3#. It is a quantum superpo
sition of two motional coherent states,u6b&, of amplitudes
b and 2b, entangled with the upper and lower electron
states, respectively. This state can be given by the follow
expression

uc&5
1

A2
~ ub&u2&2u2b&u1&). ~15!

The Wigner-function matrix for this entangled quantum st
can be explicitly given by

W11~a!5
2

p
exp~22ua1bu2!,

W22~a!5
2

p
exp~22ua2bu2!, ~16!

W12~a!52
1

p
exp~22uau2!exp@2i Im~ab* !#.

It is clearly seen thatW11(a) andW22(a) represent the co-
herent states with amplitudes2b and b, respectively,
whereasW12(a) contains information on the electronic co
herence and the quantum interference effects inherent in
entangled state under study, see Fig. 1.

If the quantum state under consideration can be written
a product state

%̂5 r̂ ^ ŝ, ~17!

the corresponding Wigner-function matrix reads as

Wi j ~a!5s i j W~a!. ~18!

States of this type contain no entanglement between the
tional and electronic degrees of freedom. The correspond
Wigner-function matrixWi j (a) is of the same shape for a
indices i , j , determined by the motional Wigner functio
W(a) and weighted by the electronic density matrix e
mentss i j .

C. Representation by displaced number statistics

For determining the Wigner-function matrixWi j (a) from
measured data we note that it can be represented in term
matrix elements of the coherently displaced density oper
%̂, where only the motional diagonal elements are need
To show this we make use of Eqs.~5! and~6! together with
Eq. ~2!. By taking the trace over the electronic subsyste
the Wigner-function matrix can be written as

Wi j ~a!5
2

p
Tr@%̂ i j D̂~a!~21! â†âD̂†~a!#, ~19!

where %̂ i j 5^ i u%̂u j & is still an operator acting onHcm. By
using the cyclic property of the trace and performing t
trace in terms of number states of the harmonic vibration
the trap, the Wigner-function matrix reads as
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Wi j ~a!5
2

p (
n50

`

~21!n% i j
nn~a!. ~20!

Here we have made use of the coherently displaced den
operator

%̂~a!5D̂†~a!%̂D̂~a!. ~21!

For representing the Wigner-function matrix we only ne
the diagonal elements of%̂(a) with respect to the motiona
degree of freedom

% i j
nn~a!5^nu^ i u%̂~a!u j &un&. ~22!

For convenience we will call these quantities displaced,
tangled number statistics.

To get the full information on the entangled quantu
state, it is sufficient to measure the displaced, entang
number statistics~22!, in generalization of the method pre
sented in Refs.@18,19#. The initial coherent displacement ca
be realized by applying a radio-frequency field, as has b
done in the experimental determination of the quantum s
of the motional subsystem@19#. In the following we present
a measurement scheme for determining the displaced,
tangled number statistics% i j

nn(a).

III. MEASUREMENT SCHEME

The basic scheme consists in a three-level electronic
tem ofV type, which is superimposed by the energy levels
the motion of the atom in the harmonic trap potential, s
Fig. 2. A weak electronic transitionu1&↔u2& is the one of
interest with respect to its entanglement with the motio
degree of freedom. The dynamics of this transition is mo
tored with very high quantum efficiency by testing a stron
auxiliary transitionu1&↔u3& for the appearance of resonan
fluorescence@26#. We assume that the weak transition
driven in the resolved sideband limit. When the laser is tun
on resonance with the vibrationless line, the correspond

FIG. 2. Three-level electronic system of the trapped atom for
measurement of the displaced, entangled number statistics.
weak electronic transitionu1&↔u2& is tested by probing the stron
transitionu1&↔u3& for resonance fluorescence.
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interaction Hamiltonian~in the interaction picture! reads as
@6,27#

Ĥ int5
1

2
\V f̂ ~ â†â!Â121H.c. ~23!

HereV5uVuexp(iw) is the Rabi frequency of the laser inte
acting with the weak electronic transition andw is the phase
of the laser field@28#. The operatorsâ and â† are the anni-
hilation and creation operators of a vibrational quantum,
spectively. The functionf̂ (â†â), describing the nonlineari-
ties in the vibronic coupling, is given in its normally ordere
form by

f̂ ~ â†â!5e2h2/2(
k50

`
~21!kh2k

~k! !2 â†kâk, ~24!

with h being the Lamb-Dicke parameter, characterizing
localization of the atom in the trap. The interaction Ham
tonian ~23! fulfills the condition@ n̂,Ĥ int#50 of back-action
evasion for the vibrational number operatorn̂5â†â, so that
the latter is a constant of motion. Consequently, this inter
tion couples only between vibronic density matrix eleme
% i j

mn having the same motional indices (m,n). This renders it
possible to determine the entangled motional number sta
tics % i j

nn of the initial vibronic state by monitoring the dy
namics of the electronic transitionu1&↔u2&.

One possibility to obtain the matrix elements% i j
nn(a) is

the measurement of the time dependence of the occupa
of state u2&. This dynamics is completely determined b
those matrix elements. However, their reconstruction
quires some effort of data analysis by Fourier or other
propriate techniques, as considered for the Jaynes-Cumm
dynamics@22,23,19,8#.

In the following we will deal with an alternative metho
that directly yields the quantities desired in Eq.~20!. It is
related to the scheme proposed in Ref.@27# for the quantum
nondemolition measurement of the motional energy o
trapped atom. After a well controlled interaction time of th
laser resonant to the weak electronic transition, a laser p
is applied on the strong transition in order to probe for t
appearance of resonance fluorescence. The occurrenc
fluorescence detects the atom in the electronic ground s
u1& and its absence in the excited electronic stateu2&. We
will focus our attention on the no-fluorescence events, si
they preclude any disturbance of the motional state via li
scattering by the strong transition. Alternating sequence
light pulses on the weak and the strong transition allow o
to reduce the motional state to a Fock state, which is pre
termined by time control of the pulse sequence on the w
transition. Eventually, the desired information on the e
tangled number statistics% i j

nn(a) is directly given by the
probability of realizing such a sequence of interaction-pro
cycles, for each predetermined Fock stateun&.

Assume that, subsequent to the coherent displaceme
the motional subsystem, the atom is probed for fluoresce
on the strong transition after an interaction timet of the laser
with the weak transition. Provided the atom is detected in
electronic stateu2& ~no fluorescence!, the density operator o
the system reduces to the~unnormalized! operator

e
he
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%̂ ~red!~t !5u2&^2u ^ r̂ ~red!~t !, ~25!

where r̂ (red)(t)5^2u%̂(t)u2& is the corresponding~unnor-
malized! density operator of the motional subsystem rela
to the electronic stateu2&. In view of the interaction Hamil-
tonian ~23!, the diagonal elements ofr̂ (red)(t) in number-
state representation are given by

rnn
~red!~t !5%22

nn~a!cos2S Vnt

2 D1%11
nn~a!sin2S Vnt

2 D
1Im@%12

nn~a!e2 iw#sin~Vnt!, ~26!

where Vn5uVuLn(h2)exp(2h2/2) are the nonlinear vi-
bronic Rabi frequencies,Ln(x) being Laguerre polynomials

Let us consider the effect ofk of these interaction-probe
cycles with interaction timest1 , . . . ,tk , each one accompa
nied by no fluorescence@29#. The resulting~unnormalized!
motional number statistics is conditioned on the tim
t1 , . . . ,tk , at which the reductions to the stateu2& occurred,
and reads as

rnn
~red!~tk , . . . ,t1!5 )

q52

k

cos2S Vntq

2 D rnn
~red!~t1!. ~27!

The probability P(tk , . . . ,t1) to obtain such a sequenc
of interaction-probe cycles is given by the trace
r̂ (red)(tk , . . . ,t1),

P~tk , . . . ,t1!5 (
n50

`

rnn
~red!~tk , . . . ,t1!, ~28!

and can be experimentally determined by repeating this
cedure many times and counting the number of times
was successful in obtaining such a sequence.

An adequate choice of the interaction timestk allows one
to map rnn

(red)(t1) onto the probabilityP(tk , . . . ,t1). For
mapping the particular elementrmm

(red)(t1), it is useful to
choose the interaction timest2 , . . . ,tk as

t2 , . . . ,tk5
2p

Vm
p, p51,2, . . . , ~29!

wherep can be set to a different integer at each interact
cycle. From Eq.~27! it is seen that after an appropriate num
berk>kmin of interaction-probe cyclesrnn

(red)(tk , . . . ,t1) re-
duces to

rnn
~red!~tk , . . . ,t1!5dnmrmm

~red!~t1!. ~30!

The other matrix elements (nÞm) are suppressed by th
product of cosines in Eq.~27!, provided that different mo-
tional number states are efficiently discriminated by the
bronic Rabi frequenciesVn @27#. It is easy to see@cf. Eqs
~28!, ~30!# that in this case the probabilityP(tk , . . . ,t1)
reflects the quantityrmm

(red)(t1) and that further interaction
probe cycles will not change anything. Since the interact
times tk are specified from the beginning, the minimu
numberkmin of cycles needed to complete the mapping p
cess can be evaluated.
d

s

f

o-
e

n

-

n

-

The number statisticsrmm
(red)(t1) obtained in this manne

can be used to determine the entangled, motional num
statistics% i j

mm(a) of the displaced initial vibronic state via
Eq. ~26!. For this purpose, three different choices of the fi
interaction timet1 are desired:

FIG. 3. Wigner-function matrixWi j (a) of the entangled vi-
bronic quantum stateuc& @Eq. ~15!# with b52. Each matrix ele-
ment% i j

mm(0;a) has been numerically sampled with 1000 trials a
a sequence ofk530 interaction-probe cycles on a 25315 grid. The
Lamb-Dicke parameter ish50.1.
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~i! t150: After detecting the atom in the excited ele
tronic stateu2& ~no detection of fluorescence!, rmm

(red)(t1) is
given by

rmm
~red!~t1!5%22

mm~a!. ~31!

~ii ! t15p/Vm : For this choice the diagonal elements
the motional density matrix are given by

rmm
~red!~t1!5%11

mm~a!. ~32!

~iii ! t15p/(2Vm): In this case one arrives at

rmm
~red!~t1!5

1

2
@%11

mm~a!1%22
mm~a!#1Im@%12

mm~a!e2 iw#.

~33!

Choosing two laser phases,w50 and w52p/2, one can
obtain the imaginary and real parts of%12

mm(a), respectively,
by subtracting one-half of the outcomes from~i! and ~ii !.
Eventually, any positive event~series of no fluorescence!
recorded in this manner can be stored in the computer f
direct sampling of the Wigner-function matrix~to be normal-
ized by the number of trials! according to Eq.~20!.

IV. NUMERICAL SIMULATIONS

A typical example for an entangled vibronic quantu
state of a trapped atom is the state given in Eq.~15!. In Fig.
3 we show a simulation of all steps of the scheme for
determination of the Wigner-function matrix of the sta
uc& according to the method proposed above. The maxim
pulse length of the laser resonant to the weak transition i
the order of 6 ms for a typical Rabi frequency o
V/2p5500 kHz@30#. For interaction times of this order th
electronic relaxation of the weak transition is negligible. T
time needed for the data acquisition of a point in phase sp
is approximately 30 s, so that the complete sampling of
matrix element of the Wigner-function matrixWi j (a) as
shown in Fig. 3 would take about 3 h. This is compara
with the data-acquisition time needed for the reconstruc
of the quantum state of the motional subsystem, by meas
ment of the time evolution of the electronic inversion@19#.
The advantage of our scheme, however, consists in the
that the desired number statistics is directly observed, w
no need for inverting systems of linear equations with no
data input.

The diagonal elementsW22(a) andW11(a) simply repre-
sent the Wigner functions of the coherent statesub& and
d,

et
a

e

m
of
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u2b& respectively. The off-diagonal elementsWi j (a) con-
tain the more interesting information on quantum interf
ences inherent in the entangled state~15!. Comparing with
the theoretical result ofWi j (a) given in Fig. 1, a good agree
ment between theory and simulation is found. Note that
entanglement is reflected by the fact that the Wign
function matrix is different for different electronic indices.
one would measure the Wigner function of the motional s
system,W(a)5( iWii (a), the result would be nothing bu
an incoherent superposition of two coherent states, c
pletely concealing the nonclassical character of the ato
state. That is, in the chosen example the nonclassical na
of the system is manifested by the entanglement. Our m
surement scheme is directly suited to demonstrate these
tures.

V. SUMMARY AND CONCLUSION

In conclusion we have proposed a measurement techn
for obtaining the full information on entangled vibron
states of a trapped atom. First of all, this requires a cha
terization of the full quantum state of the composed syste
which can be related to an appropriate measurement sch
For this purpose we define a Wigner-function matrix that h
the character of a density matrix with respect to the el
tronic degrees of freedom, and of a Wigner function for t
motional subsystem. This Wigner-function matrix is read
related to the displaced, entangled motional number statis
of the atom.

For the determination of the Wigner-function matrix w
have presented a method that allows the measurement o
displaced, entangled motional number-statistics. It is ba
on the nonlinearities appearing in the vibronic coupling o
resonantly driven, weak electronic transition. This coupli
fulfills the backaction evasion criterion for the number
motional quanta. It eventually allows, in combination wi
electronic-state reductions by fluorescence measurem
the direct statistical sampling of a Wigner-function matr
displaying the entanglement between the motional and
electronic degrees of freedom of the atom. The method p
posed here opens new perspectives for experimental dem
strations of fundamental properties of interacting quant
systems.
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