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Determination of entangled quantum states of a trapped atom

S. Wallentowitz, R. L. de Matos Filho, and W. Vogel
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We propose a method for measuring entangled vibronic quantum states of a trapped atom. It is based on the
nonlinear dynamics of the system that appears by resonantly driving a weak electronic transition. The proposed
technique allows the direct sampling of a Wigner-function matrix, displaying all knowable information on the
guantum correlations of the motional and electronic degrees of freedom of the atom. It opens possibilities for
testing fundamental predictions of the quantum theory concerning interaction phenomena.
[S1050-294{@7)03008-4

PACS numbses): 03.65.Bz, 42.50.Vk, 32.80.Pj

I. INTRODUCTION representatiorf14], and symplectic tomographjl5]. To-
mographic methods have also been realized for molecular

Entanglement is one of the most striking aspects of quanvibrations[16] and proposed for reconstructing the motional
tum mechanicd1,2]. In classical physics, two interacting quantum state of trapped atorfis7]. Alternatively, phase-
systems retain their individuality during the interaction pro-space distributions can be determined by measuring the num-
cess and become Comp|ete|y independent of each other aft@?r statistics of the quantum state of intereSt, after introduc-
their coupling has been switched off. By way of contrast,iNg appropriate coherent displacemefit8]. A method of
quantum theory predicts a completely different behavior ofthe latter type has recently been used to reconstruct the mo-
interacting systems. When two quantum systems are made f@nal state of a trapped atofi19]. For quantum systems
interact, their identities become in the course of time mordindergoing a Jaynes-Cummings type dynanifds such as
and more entangled, so that a state vector description of eatgh-Q cavity fields[20,8] or trapped atomg21,6,7, various
System is in genera| prec|uded_ They build an entang]eﬂﬂethOdS have been considered to Study the quantum statis-
composite system, whose state vector cannot be separatBés of the bosonic subsystefthe field or the center-of-mass
into a product of the states of the subsystems. More surprignotion, cf. [22-24,19. All these methods, however, give
ing, the entanglement is preserved even after switching offi© insight into the entanglement of quantum systems.
the interaction, so that a measurement on one system will In this contribution we propose a method for determining
affect the other one. The individual systems can be charac@ntangled vibronic quantum states of a trapped atom. In Sec.
terized by(reduced density matrices. However, even when !l of this paper we introduce a Wigner-function matrix,
the reduced density matrices of both Subsystems are knowﬂl,hiCh contains the full information on the CompOSite system
important information on the physics of their interaction andunder study. After a brief discussion of its properties we
the related entanglement is lost. show that it can be determined via measurements of en-

Recently, entangled quantum states of an electronic Sygangled, motional number statistics. In the following section
tem and a harmonic oscillator have been realized withVe present a concrete scheme for measuring those quantities.
trapped atom$3] and in cavity QED[4]. The signatures of |t relies on the nonlinearities appearing in the motional dy-
the entanglement have been partially demonstrated by quafRamics of the trapped atom interacting with laser light,
tum measurements. The determination of the full quanturvhich have been predicted for atomic localizations beyond
statistical information of such quantum states, however, rethe Lamb-Dicke regim¢6] and confirmed in recent experi-
quires new types of quantum measurements. Moreover, it i§¥ents[7]. By monitoring the electronic dynamics, combined
interesting in this context that with both types of systems thavith coherent displacements of the motional subsystem, one
Jaynes-Cummings modg$] and its nonlinear trapped-atom €an perform a direct sampling of the Wigner-function matrix
counterpart[6] could be realized[7,8]. In the Jaynes- of the vibronic state. In Sec. IV we present a numerical simu-
Cummings interaction the quantum correlation between théation of the reconstruction of the Wigner-function matrix
interacting systems has been predicted to show surprisingnd briefly discuss the practical aspects of our method. A
features[9]. In all these cases methods for determining theSummary and some conclusions are given in Sec. V.
full information on the quantum state of entangled systems
are desired for getting more insight into interaction phenom- Il. CHARACTERIZATION OF ENTANGLED
ena in the quantum world. QUANTUM STATES

Several approaches have been proposed for determining ) )
the complete information on the quantum state of single The motional quantum state of a trapped atom is usually
guantum systems. In particular, homodyne tomography hadescribed by a density operajgrwhich is an operator in the
been established for optical field$0]. Further simplifica- Hilbert spaceH,, of the motion of the atom in the trap. To
tions of the method have been introduced, including the diget a phase-space description of the motional state of the
rect statistical sampling of the density matrix in field- atom one is led to quasiprobability distributions such as, for
strength(quadraturgrepresentationl1-13, photon-number example, the Wigner function. This function can be obtained
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from the density operator as follovj25,13 showing that the complete information on the quantum state
of the atom is contained in the Wigner-function matrix
W(a)=(d(a—a))= T pd(a—a)], D Wij(a).
where the operator-valued delta functidifa—a) is the B. Properties of the Wigner-function matrix

Fourier transform of the displacement operator Let us now discuss some properties of the Wigner-

() = At A i : X L
D(a)=exp(ea’-a*a) and reads af25)] function matrix W;;(a). It is easy to see that its diagonal
1 elementsW;;(«) represent the Wigner functions of the con-
$(a—£\)=—J ngﬁ(g)eaﬁ*—a*f ditioned density operatorg;; correlated to the electronic
w

state|i). More precisely, this means that if one would mea-
2 e sure the electronic state of the trapped atom to be in state
=—D(a)(—1)22D%(a). (2 li), the correspondingunnormalizedl conditioned Wigner
™ function of the motional subsystem would Wé;(«). The
. . : norm of this conditioned Wigner function is simply the oc-
Eﬁg}flwi(lzeiitr?(iig;]verted to get the density operator OUtcupation probabilityo;; of the electronic statéi), whereas
9 the norm of the off-diagonal elemerit§;;(a) (i#]) repre-
A A A sents the electronic coherence
p=f d?aW(a)d(a—a), )
f dzaWij(a)=Tr[Ajié]=0'ij . (8)
so that the knowledge diN(«) is equivalent to the knowl-
edge of the motional density operajor Moreover, from Eqgs(5) and (6) it is seen that the Wigner-
function matrix is Hermitian
A. Wigner-function matrix
Even though the Wigner functiow/(«) displays all the Wij () =Wji (), ©)
obtainable knowledge about the motional state of the atom, Iéo that in order to have the full information on the quantum

gives no information on its electronic degrees of freedom'state under consideration, it is sufficient to know the real-

For a complete description of the atomic state — i.e., includ- . - . -
P b alued diagonal elements of the Wigner-function matrix

ing the electronic degrees of freedom — one has to genera- : : .
ize the concepts leading to the definition of the Wigner func- i(@) and the real and imaginary parts of the off-diagonal

. . . ) - elementsWj;(a) (i<j).

tion. For this purpose we introduce the density opergtof If one measures the electronic state to be in an arbitrary
the whole system, which is now an operator in the pmducguperposition

space of motional and electronic Hilbert spaéég,® He.

The reduced density operators for the motional and elec-

tronic subsystems can be obtained by taking the trace over |l//>=2_ wili), (10

the Hilbert spaces of the electronic systdel) and the :

center-of-mass motiofcm), respectively,

p=Tr0], o=Trlel. (4)

We now define a Wigner-function matrix describing the

complete quantum state of the trapped atom by generalizing

Eq. (1), The Wigner function of this motional quantum state can now
be represented in terms of the Wigner-function mathix

the conditioned density matrix of the motional subsystem is

E><'¢'>>=Tre.[|w><¢|é]=; W0 - (11)

Wij(a)=(&j(a—a))=Tr[ed;(a—a)], 6)

- - [0 ( o) = * W
where 6;;(a—a) is now an operator in the product space WD (@) %: @i Wi (@). (12)
Hem® He @and is defined by

This result shows that the off-diagonal elements of the

Sij(a—a)=A;d(a—a). (6)  Wigner-function matrix, which are in general complex val-
. ued, contain the information on the electronic coherences
Here we have used the electronic flip operatds=|j)(i|, ~ and the corresponding motional states, which are entangled

which describe transitions from the electronic s{ajeto the  with these coherences.

state|j). In close analogy with the case of the motional On the other hand, if one has no information about the
subsysten(3), the density operator of the composite systemelectronic state of the atom, the density operator of the mo-
can be obtained from this Wigner-function matrix as tional subsystem is given by

é=; d2aW;j(@) 8 (a—a), (7) ;3=Tre.[é]=2 0ii - (13)
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“Schrodinger-cat” states. The quantum state considered
here has been recently prepared experimentally with a
trapped atom by Monroet al.[3]. It is a quantum superpo-
sition of two motional coherent statgs; 8), of amplitudes

B and — B, entangled with the upper and lower electronic
states, respectively. This state can be given by the following
expression

1
|¢>=E(IB>|2>—I—B>I1>)- (15

The Wigner-function matrix for this entangled quantum state
can be explicitly given by

2
Wai(a) = —exp( 2|+ B|?),
2
Woo @) = —exp(—2|a= pI?), (16

Wyy(a)=— %exq—2|a|2)ex;{2i Im(aB*)].

It is clearly seen thatV,;(«) and W, («a) represent the co-
herent states with amplitudes- 8 and B, respectively,
whereasW,,(«) contains information on the electronic co-
herence and the quantum interference effects inherent in the
entangled state under study, see Fig. 1.

If the quantum state under consideration can be written as
a product state

0=p®a, (17)
the corresponding Wigner-function matrix reads as
Wi (@)= oijW(a). (18

States of this type contain no entanglement between the mo-
tional and electronic degrees of freedom. The corresponding
Wigner-function matrixw;;(«) is of the same shape for all
indices i,j, determined by the motional Wigner function
W(«) and weighted by the electronic density matrix ele-
mentSO'ij .

C. Representation by displaced number statistics

For determining the Wigner-function matri¥;;(«) from
measured data we note that it can be represented in terms of
matrix elements of the coherently displaced density operator

FIG. 1. Wigner-function matrixW;; () of the entangled vi- o, where o'nly the motional diagonal elements are ngeded.
bronic quantum statgy) [cf. Eq. (15)] with 8=2. To show this we make use of Eq&) and(6) together with
Eq. (2). By taking the trace over the electronic subsystem,
The Wigner function of this reduced density operator read$he Wigner-function matrix can be written as
as

2 .. o
Wij(@)= —Tr{e;jD(a)(~1)**D"(a)], (19
W(@)=2 Wi(a), (14)
where ¢;;=(i|e|j) is still an operator acting oft{cy,. By
and is simply the trace of the Wigner-function matrix. using the cyclic property of the trace and performing the

In Fig. 1 we show an example for the Wigner-function trace in terms of number states of the harmonic vibration in
matrix of an entangled state corresponding to the so-callethe trap, the Wigner-function matrix reads as
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3) interaction Hamiltoniar(in the interaction picturereads as
(6,27]

A R
Him=§ﬁﬂf(aTa)A12+H.c. (23)

Here Q) =|Q|expl¢) is the Rabi frequency of the laser inter-
acting with the weak electronic transition apds the phase

of the laser field 28]. The operators anda' are the anni-
hilation and creation operators of a vibrational quantum, re-

spectively. The functiorf(a’a), describing the nonlineari-
ties in the vibronic coupling, is given in its normally ordered
form by

TR a3 - S
f(a'a)=e ”/zk:() Waﬂ(ak, (24)

FIG. 2. Three-level electronic system of the trapped atom for thevith » being the Lamb-Dicke parameter, characterizing the
measurement of the displaced, entangled number statistics. THecalization of the atom in the trap. The interaction Hamil-

weak electronic transitiofil)«|2) is tested by probing the strong tonjan (23) fulfills the condition[n,H ;,,]=0 of back-action

transition|1)«{3) for resonance fluarescence. evasion for the vibrational number operatora'a, so that

5 the latter is a constant of motion. Consequently, this interac-

_ nonn tion couples only between vibronic density matrix elements

Wij ()= ;nzo (=D (@) 20 Qi”]-‘“ having the same motional indicem(n).xl'his renders it
possible to determine the entangled motional number statis-

Here we have made use of the coherently displaced density.g Qiﬂjn of the initial vibronic state by monitoring the dy-

operator namics of the electronic transitida)«|2).

One possibility to obtain the matrix elemergg"(a) is
the measurement of the time dependence of the occupation

For representing the Wigner-function matrix we only need®f state[2). This dynamics is completely determined by

the diagonal elements @c( ) with respect to the motional those matrix elements. However, their reconstruction re-
degreegof freedom @ P quires some effort of data analysis by Fourier or other ap-

propriate techniques, as considered for the Jaynes-Cummings
ei(@)=(nl(ile(a)lj)In). (22

dynamics[22,23,19,8
In the following we will deal with an alternative method

For convenience we will call these quantities displaced, enthat directly yields the quantities desired in HGO). It is
tangled number statistics. related to the scheme proposed in Réf7] for the quantum

To get the full information on the entangled quantumnondemohtmn measurement of the motional energy of a
state, it is sufficient to measure the displaced, entanglef@Pped atom. After a well controlled interaction time of the
number statistic$22), in generalization of the method pre- laser resonant to the weak electronic transition, a laser pulse
sented in Refd18,19. The initial coherent displacement can IS @pplied on the strong transition in order to probe for the
be realized by applying a radio-frequency field, as has beefiPPearance of resonance quo_rescence. The_ occurrence of
done in the experimental determination of the quantum statiuorescence detects the atom in the electronic ground state
of the motional subsystelfid]. In the following we present |1) and its absence in the excited electronic stae We

a measurement scheme for determining the displaced, eMdll focus our attention on the no-fluorescence events, since
tangled number statistiog"() they preclude any disturbance of the motional state via light
1] "

scattering by the strong transition. Alternating sequences of
light pulses on the weak and the strong transition allow one
to reduce the motional state to a Fock state, which is prede-
The basic scheme consists in a three-level electronic sygermined by time control of the pulse sequence on the weak
tem ofV type, which is superimposed by the energy levels oftransition. Eventually, the desired information on the en-
the motion of the atom in the harmonic trap potential, segangled number statisticg{}”(a) is directly given by the
Fig. 2. A weak electronic transitiofl)«|2) is the one of probability of realizing such a sequence of interaction-probe
interest with respect to its entanglement with the motionakycles, for each predetermined Fock statp
degree of freedom. The dynamics of this transition is moni- Assume that, subsequent to the coherent displacement of
tored with very high quantum efficiency by testing a strong,the motional subsystem, the atom is probed for fluorescence
auxiliary transition|1)«|3) for the appearance of resonance on the strong transition after an interaction timef the laser
fluorescencg 26]. We assume that the weak transition is with the weak transition. Provided the atom is detected in the
driven in the resolved sideband limit. When the laser is tuneatlectronic stat¢2) (no fluorescencethe density operator of
on resonance with the vibrationless line, the correspondinghe system reduces to tliennormalized operator

0(a)=D"(a)eD(a). (21)

IIl. MEASUREMENT SCHEME
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0eI(7)=|2)(2|® p("I(7), (25) Wii(a)

~ ~ . . 0.3
where p®d(7)=(2|p(7)|2) is the correspondingunnor-

malized density operator of the motional subsystem related 0.2
to the electronic statg2). In view of the interaction Hamil- 0.1

tonian (23), the diagonal elements ¢f™%(7) in number-
state representation are given by

ped(r)=0} (a)coé(

+Q11(a)sin2(QnT
+Im[e}5(a)e”¢]IsinQ,7), (26)

where Q,=|Q|L,(7?)exp(-7%/2) are the nonlinear vi-
bronic Rabi frequencies, (x) being Laguerre polynomials.

Let us consider the effect &f of these interaction-probe
cycles with interaction times,, . ..,7, each one accompa-
nied by no fluorescencg9]. The resulting(unnormalizegl
motional number statistics is conditioned on the times
71, - - ., Tk, at which the reductions to the stdf occurred,
and reads as

k Q.7
pgr,?ﬂ”(rk,...,n):HZcosz( )pw(m. (27)

q=

The probability P(7,, ...,m;) to obtain such a sequence
of interaction-probe cycles is given by the trace of

p e, ...,

P(r, .. 7'1)—2 p(red) (Tky -« -4T1), (28

and can be experimentally determined by repeating this pro-
cedure many times and counting the number of times one
was successful in obtaining such a sequence.

An adequate choice of the interaction timgsallows one
to map p{®¥(7;) onto the probabilityP(, ...,r;). For I [Wig(e)]
mapping the particular elememt{®¥(7,), it is useful to 12

choose the interaction times, ... ,7¢ as 0.2
2w

T2, ...,TKZQ—p, p=1,2,..., (29) 0
m

wherep can be set to a different integer at each interaction
cycle. From Eq(27) it is seen that after an appropriate num-

berk= Kk, of interaction-probe cycles!*¥(, . ..,r;) re- Im(a)
duces to Re(a)
PRI, D)= St (7). (30)

FIG. 3. Wigner-function matrixWj(a) of the entangled vi-
bronic quantum stat&y) [Eq. (15)] with 8=2. Each matrix ele-
mente;;"(0;@) has been numerically sampled with 1000 trials and
a sequence df= 30 interaction-probe cycles on a:245 grid. The
Lamb-Dicke parameter ig=0.1.

The other matrix elementsn¢zm) are suppressed by the
product of cosines in Eq27), provided that different mo-
tional number states are efficiently discriminated by the vi-
bronic Rabi frequencie§), [27]. It is easy to segcf. Egs
(28), (30)] that in this case the probabilit(7, ... ,r1)
reflects the quantity®Y(r,) and that further interaction-  The number statisticp{ir(71) obtained in this manner
probe cycles will not change anything. Since the interactiorcan be used to determine the entangled, motional number
times 7, are specified from the beginning, the minimum statisticsgi'}‘m(a) of the displaced initial vibronic state via
numberk,,, of cycles needed to complete the mapping pro-Eg. (26). For this purpose, three different choices of the first
cess can be evaluated. interaction timer, are desired:
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(i) 71=0: After detecting the atom in the excited elec- |— ) respectively. The off-diagonal elementé;(a) con-
tronic state|2) (no detection of fluorescengep{%(r;) is  tain the more interesting information on quantum interfer-

given by ences inherent in the entangled stét&). Comparing with
the theoretical result oiV;;(«) given in Fig. 1, a good agree-
P () =05 (a). (31))  ment between theory and simulation is found. Note that the

- ) ) _ entanglement is reflected by the fact that the Wigner-
(it) 7y=m/Qp: For this choice the diagonal elements of fynction matrix is different for different electronic indices. If

the motional density matrix are given by one would measure the Wigner function of the motional sub-
(red oMM ) (32) system,\W(a)=2;W,;(«), the result would be nothing but
Pmm (T1)= €11 ' an incoherent superposition of two coherent states, com-

pletely concealing the nonclassical character of the atomic

i) 7=m/(2Q,,): In this case one arrives at e .
(it) 72 (28m) state. That is, in the chosen example the nonclassical nature

(red 1 o o B of the system is manifested by the entanglement. Our mea-
Pmm (T1) = 5[011 (@) + 022 (@) ]+ Mm@z (a)e 4] surement scheme is directly suited to demonstrate these fea-
(33) tures.
Chogsing Mo Igser phaseg=0 and ¢=— /2, one can V. SUMMARY AND CONCLUSION
obtain the imaginary and real parts @f5"(«), respectively, . .
by subtracting one-half of the outcomes frai and (ii). In conclusion we have proposed a measurement technique

Eventually, any positive evenseries of no fluorescence for obtaining the full information on entangled vibronic
recorded in this manner can be stored in the computer for gtates of a trapped atom. First of all, this requires a charac-
direct sampling of the Wigner-function matrito be normal-  terization of the full quantum state of the composed system,

ized by the number of trialsaccording to Eq(20). which can be related to an appropriate measurement scheme.
For this purpose we define a Wigner-function matrix that has
IV. NUMERICAL SIMULATIONS the character of a density matrix with respect to the elec-

tronic degrees of freedom, and of a Wigner function for the

A typical example for an entangled vibronic quantum motional subsystem. This Wigner-function matrix is readily
state of a trapped atom is the state given in @§). In Fig.  related to the displaced, entangled motional number statistics
3 we show a simulation of all steps of the scheme for theof the atom.
determination of the Wigner-function matrix of the state For the determination of the Wigner-function matrix we
| ) according to the method proposed above. The maximurhave presented a method that allows the measurement of the
pulse length of the laser resonant to the weak transition is dflisplaced, entangled motional number-statistics. It is based
the order of 6 us for a typical Rabi frequency of on the nonlinearities appearing in the vibronic coupling of a
Q/27=500 kHz[30]. For interaction times of this order the resonantly driven, weak electronic transition. This coupling
electronic relaxation of the weak transition is negligible. Thefulfills the backaction evasion criterion for the number of
time needed for the data acquisition of a point in phase spaa@otional quanta. It eventually allows, in combination with
is approximately 30 s, so that the complete sampling of onelectronic-state reductions by fluorescence measurements,
matrix element of the Wigner-function matriw;;(a) as the direct statistical sampling of a Wigner-function matrix
shown in Fig. 3 would take about 3 h. This is comparabledisplaying the entanglement between the motional and the
with the data-acquisition time needed for the reconstructiorelectronic degrees of freedom of the atom. The method pro-
of the quantum state of the motional subsystem, by measurg@osed here opens new perspectives for experimental demon-
ment of the time evolution of the electronic inversigiB]. strations of fundamental properties of interacting quantum
The advantage of our scheme, however, consists in the fasiystems.
that the desired number statistics is directly observed, with
no need for inverting systems of linear equations with noisy
data input.

The diagonal elementd/, (@) andWy,(«) simply repre- This work was supported by the Deutsche Forschungsge-
sent the Wigner functions of the coherent statgs and  meinschaft.
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