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1. Introduction

The phase-space formulation of quantum mechanics is still in 
the focus of research interest, as it has numerous important appli-
cations [1–4]. Quasi-probability distributions such as the Wigner 
function [5], the Husimi Q-function [6,7] and Glauber–Sudarshan 
P-function [8,9] describe completely the states of a quantum sys-
tem and they are widely used for calculations in various physical 
problems [10–15]. They have proven to be very useful in quantum 
optics [16–18]. A probability representation with fair probability 
distributions defined on the phase space has also been introduced 
in the literature [19–21]. A probability distribution called the sym-
plectic tomogram was introduced in connection with measuring 
the quantum states of light by means of optical homodyne to-
mography [22–24]. The properties of this tomographic probability 
representation are discussed in detail in review [25].

In order to use quasi-probability distributions and tomograms 
in physical problems the operators modeling observable physi-
cal quantities have to be represented. [26]. This representation is 
called the symbol of operators. The algebra of symbols correspond-
ing all possible manipulations with operators on the Hilbert space 
can be constructed by applying the general star-product scheme 
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[27–29]. Within this formalism one can relate operators to their 
symbols using dequantizers and can reconstruct operators from 
their symbols using quantizers. The relations between different 
phase-space representations can be also determined in this frame-
work [29–32].

All these ideas can be extended to finite dimensional quantum 
systems. Finding a complete, continuous Wigner function for such 
system is still a subject of investigations [33–35]. Beside these ef-
forts there is an increasing interest in the construction of discrete 
phase spaces and Wigner functions owing to their possible appli-
cations in quantum information science. There are several ways of 
constructing such a phase space and the definition of a discrete 
Wigner function in this space is still ambiguous [36–47]. The ap-
proach introduced in [40] has proven to be well suited to study 
various quantum information problems [48]. In this method, an 
N × N phase space is defined for N dimensional quantum sys-
tems, where N is a power of a prime number. This is the case, e.g. 
for qubit systems. This phase space has the same geometric prop-
erties as those of the ordinary infinite dimensional phase space. 
Wigner functions can be defined in this space using Hermitian op-
erators connected to special mutually orthogonal sets of parallel 
lines called striations. There exist N + 1 different striations and 
the bases associated with them are mutually unbiased [4,43,49,50]. 
Such discrete Wigner functions have the same essential properties 
as their continuous counterparts. The most interesting one from 
the point of view of tomographic measurements is that the sum of 
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values of a Wigner function along any line in phase space is equal 
to the probability of detecting the basis state associated with the 
line [48].

Tomographic probability distributions called spin tomograms 
[51–54], and unitary matrix tomograms [55] have been also devel-
oped for finite dimensional spin systems. The star product formal-
ism of symbols for N-dimensional systems is described in detail in 
[56]. Using this formalism the relations between tomograms and 
Wigner functions for one and two qubits have been determined 
[57,58,56].

In this paper we consider the problem of finding and charac-
terizing minimal sets of quantizers and dequantizers for finite di-
mensional quantum systems. We determine the general properties 
of such sets. Given minimal sets of dequantizers and quantizers for 
a particular quantum system, any type of symbols of the operators 
and the quantum states consisting of minimal elements, e.g., dis-
crete Wigner functions, can be treated in a common framework. 
We find explicit expressions describing all the minimal self-dual 
sets of dequantizers and quantizers for a qubit system.

The paper is organized as follows. In Section 2 we present the 
general formalism of mapping operators onto functions based on 
dequantizers and quantizers. The general properties of minimal 
sets of dequantizers and quantizers for N dimensional systems is 
described in Section 3. In Section 4 the explicit form of all minimal 
self-dual sets of dequantizers and quantizers for a qubit system is 
found.

2. Dequantizers and quantizers

In this section we summarize the general formalism of using 
c-number functions instead of operators to describe quantum sys-
tems [26–29]. Let Â be a Hermitian operator acting on a Hilbert 
space H so it can be an operator describing an observable or the 
density operator ρ̂ of the quantum system. Suppose we have a set 
of linear operators Û (x) acting on H and labelled by the param-
eter x that is an n-dimensional vector x = (x1, x2, . . . , xn) in the 
general case. One can construct a c-number function f Â(x) called 
the symbol of the operator Â using the definition

f Â(x) = Tr[ ÂÛ (x)]. (1)

This linear mapping of operators onto functions is invertible if 
there is a set of operators D̂(x) acting on H such that

Â =
∫

f Â(x)D̂(x)dx. (2)

The operators Û (x) and D̂(x) are called dequantizers and quan-
tizers, respectively. In this formalism the operation for functions 
corresponding to the multiplication of Â and B̂ is called star prod-
uct and defined by

f Â B̂(x) = f Â(x) ∗ f B̂(x) = Tr[ Â B̂Û (x)]. (3)

Multiplying Eq. (2) by the operator Û (x′) and taking the trace we 
get

f Â(x′) =
∫

f Â(x)Tr[D̂(x)Û (x′)]dx. (4)

For continuous systems the operators Û (x) are defined in the 
usual phase space with the coordinates (q, p) while for discrete 
systems x can be both discrete and continuous as in the case of 
spin tomograms, or it can be purely discrete as in the case of 
discrete Wigner functions defined e.g. in [40]. In the latter case 
Eqs. (2) and (4) can be written as

Â =
N∑

f Â(k)D̂(k) (5)

k=1
and

f Â(k′) =
N∑

k=1

f Â(k)Tr[D̂(k)Û (k′)], (6)

respectively.
For a d dimensional discrete quantum system the term minimal 

set of quantizers and dequantizers is introduced for sets contain-
ing d2 linearly independent operators. From Eq. (6) it follows that 
the quantizer and dequantizer operators of such sets satisfy the 
condition

Tr
(

D̂(k)Û (k′)
) = δ(k,k′). (7)

For some special set of dequantizers the symbols are called the 
Wigner function [40]. These dequantizers are Hermitian operators 
and coincide with the corresponding quantizers. So they form a 
self-dual system.

3. Minimal sets of dequantizers and quantizers

In this section we consider the general properties of minimal 
sets of quantizers and dequantizers for N-dimensional systems.

Let us analyze first a two-dimensional qubit system. For this 
system the minimal set of dequantizers consists of four linearly 
independent operators Û (k) that can be represented by four matri-
ces

Û (k) =
(

U (k)
11 U (k)

12

U (k)
21 U (k)

22

)
, k = 1,2,3,4. (8)

First we address the problem of determining the four corre-
sponding quantizers

D̂(k) =
(

D(k)
11 D(k)

12

D(k)
21 D(k)

22

)
, k = 1,2,3,4 (9)

satisfying Eq. (7) that can be written using the notations of Eqs. (8)
and (9) as

Tr
(
Û (k) D̂(k′)) = δ(k,k′). (10)

We assume that the dequantizers U (k) are known.
Let us introduce the operator

Â =

⎛
⎜⎜⎜⎜⎜⎝

U (1)
11 U (1)

21 U (1)
12 U (1)

22

U (2)
11 U (2)

21 U (2)
12 U (2)

22

U (3)
11 U (3)

21 U (3)
12 U (3)

22

U (4)
11 U (4)

21 U (4)
12 U (4)

22

⎞
⎟⎟⎟⎟⎟⎠ , m,n = 1,2,3,4 (11)

built up from the elements of the four dequantizer operators and 
the operator

B̂ =

⎛
⎜⎜⎜⎜⎜⎝

D(1)
11 D(1)

12 D(1)
21 D(1)

22

D(2)
11 D(2)

12 D(2)
21 D(2)

22

D(3)
11 D(3)

12 D(3)
21 D(3)

22

D(4)
11 D(4)

12 D(4)
21 D(4)

22

⎞
⎟⎟⎟⎟⎟⎠ (12)

containing the elements of the four quantizer operators. It is easy 
to see that the equation (10) is equivalent to

Â B̂ T = Î (13)

As the operators Û (k) are linearly independent therefore the de-
terminant of the matrix Â is not equal to zero. From Eq. (13) it 
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is clear that det(B̂) = (det( Â))−1 �= 0 implying that the quantizers 
D̂(k) are also linearly independent. From Eq. (10) or by performing 
the matrix product in (13) one can achieve four systems of equa-
tions labeled by k′ each of which containing four linear equations 
labeled by k in the form

U (k)
11 D(k′)

11 + U (k)
21 D(k′)

12 + U (k)
12 D(k′)

21 + U (k)
22 D(k′)

22 = δ(k,k′),
k,k′ = 1,2,3,4.

(14)

The solution of these systems of equations can be formulated 
as follows:

B̂ = Â(c)(det( Â))−1, (15)

where Â(c) is the cofactor matrix of Â .
For example the elements of the quantizer D(1) can be ex-

pressed as

D(1)
11 = A(c)

11 (det( Â))−1, D(1)
12 = A(c)

12 (det( Â))−1,

D(1)
21 = A(c)

13 (det( Â))−1, D(1)
22 = A(c)

14 (det( Â))−1.
(16)

In the following we examine the problem of finding different 
minimal sets of dequantizers Û (k) and quantizers D̂(k′) . Given a 
set of Û (k)-s, one can derive another set V̂ ( j) of dequantizers by 
applying a non-degenerate linear transformation L̂:

V̂ ( j) =
4∑

k=1

L jkÛ (k), j = 1,2,3,4. (17)

Denoting the corresponding set of quantizers by Ê( j′) the novel 
sets will satisfy the relation (10), that is,

Tr(V̂ ( j) Ê( j′)) = δ( j, j′). (18)

The operators Ê( j′) can be viewed as linear combinations of the 
previous quantizers D̂(k) , and thus written as

Ê( j′) =
4∑

k=1

M j′k D̂(k), j′ = 1,2,3,4. (19)

Substituting (17) and (19) into (18) the following matrix equa-
tion can be obtained for the four-dimensional L̂ = ||L jk|| and M̂ =
||M j′k|| matrices

L̂M̂T = Î (20)

Similarly to the case of Eq. (13), this equation leads to four systems 
of equations each of which contains four linear equations in the 
form

L j1M j′1 + L j2M j′2 + L j3M j′3 + L j4M j′4 = δ( j, j′). (21)

Solving these equations the matrix M̂ can be written in the form

M̂ = L̂(c)(det(L̂))−1 (22)

where L̂(c) is the cofactor matrix of L̂. It follows from Eq. (20) that 
if L̂ is non-degenerate then M̂ is non-degenerate, too (det(M̂) =
(det(L̂))−1 �= 0).

In conclusion, knowing a minimal set of dequantizers one can 
derive other sets by using Eq. (17), while Eqs. (15) and (22) can be 
applied to determine the corresponding minimal sets of quantizers.

From Eq. (14) an additional proposition can be deduced. In this 
expression the values of the matrix elements U (k)

11 , D(k)
11 , U (k)

22 , D(k)
22 ,

P (k), Q (k) are real. If the dequantizers Û (k) are Hermitian, that is, 
U (k)

12 = U (k)
21

∗
, in order to ensure that the expression remains real, 

the equality D(k′)
12 = D(k′)

21

∗
must be satisfied. It means that the 

quantizers are Hermitian, too.
Let us consider the case when the dequantizers are orthogonal 
to each other, that is,

Tr(Û (k)Û (k′)) = δ(k,k′). (23)

Hence, the operators Û (k) form an orthogonal basis in the space 
of operators acting on the vectors of the Hilbert space of qubits. 
Comparing Eqs. (10) and (23) for a fixed set of dequantizers Û (k) it 
is obvious that the choice D̂(k′) = Û (k′) is the solution of Eq. (10), 
that is, the corresponding quantizers D̂(k) coincide with dequan-
tizers Û (k) . Evidently, they are orthogonal to each other, that is, 
Tr(D̂(k) D̂(k′)) = δ(k, k′). So the quantizers Û (k) and dequantizers 
D̂(k) form a self-dual system.

Though all these results are formulated for a qubit, they can 
easily be generalized for a multi-qubit systems of higher dimen-
sions. In d dimensions the operators Â and B̂ corresponding to the 
operators Eqs. (11) and (12), respectively, can be defined by d2 ×d2

matrices. The connection between Â and B̂ can be still described 
by Eq. (15). The transformation rules for Û (k) and D̂(k) can be eas-
ily generalized and all the previously discussed properties of these 
operators remain valid for higher dimensions.

4. Self-dual systems

In this section we consider a qubit system and analyze in detail 
the case when the minimal sets of dequantizers and quantizers 
coincide with each other, that is, they form a self-dual system and 
these operators are Hermitian.

Let us take four general Hermitian operators

Û (k) = D̂(k) =
(

ak bk − ick

bk + ick dk

)
, k = 1,2,3,4, (24)

where the parameters ak , bk , ck , and dk are real. Our aim is to find 
explicitly the matrix elements of the operators Û (k) so that these 
matrices obey Eq. (23).

From Eq. (23) one can derive ten algebraic equations for the 16 
parameters of the operators in (24). For different matrices, that is, 
k �= k′ we get

a1a2 + d1d2 + 2(b1b2 + c1c2) = 0,

a1a3 + d1d3 + 2(b1b3 + c1c3) = 0,

a1a4 + d1d4 + 2(b1b4 + c1c4) = 0,

a2a3 + d2d3 + 2(b2b3 + c2c3) = 0,

a2a4 + d2d4 + 2(b2b4 + c2c4) = 0,

a3a4 + d3d4 + 2(b3b4 + c3c4) = 0,

(25)

and for k = k′ we have the equations

a2
k + d2

k + 2(b2
k + c2

k ) = 1, k = 1,2,3,4, (26)

ensuring the normalizations of the operators Û (k) . The parame-
ters a1, b1, c1, d1 in the operator Û (1) can be chosen arbitrarily, 
for example, a1 = 1, b1 = c1 = d1 = 0. Then from Eq. (25) we get 
a2 = a3 = a4 = 0. Finally, there remain six equations from Eqs. (25)
and (26) that can be used for determining the nine remaining 
unknown parameters. One can obtain three different solutions of 
these equations depending on how many of the parameters di
are allowed to be zero. In the following the corresponding oper-
ator sets are denoted by Û (k)

1 , Û (k)
2 and Û (k)

3 , respectively. These 
solutions can be characterized by the number of freely chosen pa-
rameters.

Let us assume that

d2d3d4 �= 0. (27)

We introduce the notation
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b3b4 + c3c4 = α2, b2b4 + c2c4 = α3, b2b3 + c2c3 = α4. (28)

From Eqs. (25) and (27) it is clear that αi �= 0 and

α2α3α4 = −γ 2 < 0. (29)

In this notation the solution is

d2
2 = −2α3α4

α2
, d2

3 = −2α2α4

α3
, d2

4 = −2α3α2

α4
, (30)

and the corresponding operators Û (k)
1 take the form

Û (1)
1 =

(
1 0

0 0

)
Û (2)

1 =
(

0 b2 − ic2

b2 + ic2
√

2γ /α2

)
,

Û (3)
1 =

(
0 b3 − ic3

b3 + ic3
√

2γ /α3

)
, Û (4)

1 =
(

0 b4 − ic4

b4 + ic4
√

2γ /α4

)
.

(31)

For the normalization equations (26) we get

2γ 2/α2
k + 2b2

k + 2c2
k = 1, k = 2,3,4. (32)

These equations contain six parameters, hence, three of them can 
be chosen freely within certain constraints ensuring that the equa-
tions have real solutions satisfying the condition in Eq. (29).

The general form of the solutions of Eqs. (32) is complicated 
and depends on the three chosen independent parameters. With-
out presenting here these expressions explicitly, we present one 
set of dequantizer operators corresponding to the general form in 
Eq. (31):

Û (1)
1 =

(
1 0

0 0

)
Û (2)

1 = 1

4

(
0 2 − i

2 + i −√
6

)
,

Û (3)
1 = 1

4

(
0 2 + i

2 − i
√

6

)
, Û (4)

1 = 1

4

(
0 −i

√
6

i
√

6 2

)
.

(33)

The other two solutions for the sets of dequantizers can be de-
rived applying the conditions

d2 = 0, d3d4 �= 0 (34)

and

d2 = d3 = 0, d4 �= 0. (35)

Applying the procedure presented above at the first set of condi-
tions one can derive the solution for the Û (k)

2 operator set in the 
form

Û (1)
2 =

(
1 0
0 0

)
, Û (2)

2 = − c2

b4

(
0 c4 + ib4

c4 − ib4 0

)
,

Û (3)
2 = c3

c4

(
0 b4 − ic4

b4 + ic4 − 2
d4

(b2
4 + c2

4)

)
,

Û (4)
2 =

(
0 b4 − ic4

b4 + ic4 d4

)
,

(36)

where

b4 = ±c2

√
2c2

3 + 2c2
2 − 1

2c2
2 − 1

, (37)

c4 = ±
√

−2c2
3 − 2c2

2 + 1

2
, (38)

d4 = ±
√

2ic3√
2c2 − 1

. (39)

The
ma
be 
qui

Û (k
3

Û (
3

Û (
3

wh

c2

c3

d4

In t
cho

min
thr
tive
rea

ers
can
Eqs
tion

V̂ (

Mu
sion

Tr(

Usi
L(i)

jk′

Tr(

us 

V̂ (

V̂ (

pre

cho
Eq.
2
 latter expressions can be deduced from the corresponding nor-
lization conditions. In this set the parameters c2 and c3 can 
chosen freely within the restriction that all parameters are re-
red to remain real (|c2| ≤ 1/

√
2 and |c3| ≤ 1/

√
2).

At the conditions of Eq. (35) the corresponding operator set 
) can be expressed as

1) =
(

1 0

0 0

)
, Û (2)

3 = − c2

b3

(
0 c3 + ib3

c3 − ib3 0

)
,

3) =
(

0 b3 − ic3
b3 + ic3 0

)
, Û (4)

3 =
(

0 0

0 d4

) (40)

ere

= ±b3,

= ±
√

1 − 2b2
3√

2
,

= ±1.

(41)

his case there is only one parameter denoted by b3 that can be 
sen freely within the restriction |b3| ≤ 1/

√
2.

In Eqs. (31), (36), and (40) we presented the general form of 
imal sets of dequantizers and quantizers for qubits containing 

ee, two, and one parameters that can be chosen freely, respec-
ly, within the restriction that all parameters have to remain 

l.
According to Eq. (17), any special minimal sets V̂ ( j) of quantiz-
 and dequantizers used for defining discrete Wigner functions 
 be derived from any type of the minimal sets presented in 
. (31), (36), and (40) by a linear transformation, so the connec-
 can be expressed as

j) =
4∑

k=1

L(i)
jk Û (k)

i , j = 1,2,3,4. (42)

ltiplying both sides by Û (k′)
i and taking the trace of the expres-

s we get

V̂ ( j)Û (k′)
i ) = Tr

(
4∑

k=1

L(i)
jk Û (k)

i Û (k′)
i

)
=

4∑
k=1

L(i)
jk Tr(Û (k)

i Û (k′)
i ).

(43)

ng Eq. (23) the expression on the right hand side simplifies to 
, therefore

V̂ ( j)Û (k′)
i ) = L(i)

jk′ . (44)

In order to illustrate the application of the latter expression, let 
consider the dequantizers

1) = 1

4

(
0 1 + i

1 − i 2

)
, V̂ (2) = 1

4

(
2 1 − i

1 + i 0

)
,

3) = 1

4

(
0 −1 − i

−1 + i 2

)
, V̂ (4) = 1

4

(
2 −1 + i

−1 − i 0

)
,

(45)

sented in Ref. [44] for deriving a discrete Wigner function.
As an example, for the set of dequantizers of Eq. (40) with the 
ice of b3 = 1/2, the linear transformation L(3) deduced from 
(44) takes the form
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L(3) = 1

2

⎛
⎜⎜⎜⎜⎝

0 −1 0 1

1 0 1 0

0 1 0 1

1 0 −1 0

⎞
⎟⎟⎟⎟⎠ . (46)

An interesting aspect of our results is that we found as many 
different types of minimal sets, i.e., three, as the number of mu-
tually unbiased bases in this space. Recall that the different types 
of discrete Wigner functions that can be derived according to the 
approach introduced in [40] are associated with the mutually un-
biased bases.

The generalization of the presented method of finding minimal 
sets of dequantizers and quantizers for higher dimensions is not 
obvious owing to the large number of parameters. In d dimensions 
the number of operators forming the minimal set is d2 contain-
ing d4 parameters, while the number of equations following from 
the orthogonality and normalization conditions is d2(d2 + 1)/2. 
Nonetheless, one can construct the minimal sets of dequantizers 
and quantizers for an N-qubit system using the tensor product of 
one-qubit dequantizers and quantizers.

5. Conclusion

We analyzed the general properties of minimal sets of dequan-
tizers and quantizers for finite-dimensional quantum systems. We 
developed a general approach for deriving the corresponding quan-
tizers assuming that a minimal set of dequantizers is known, and 
we have described the connection between different minimal sets. 
We have derived explicit expressions describing all minimal sets of 
dequantizers and quantizers for a qubit.
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Man’ko, Theor. Math. Phys. 166 (2011) 356–368.
[32] V.A. Andreev, L.D. Davidović, M.D. Davidović, M.D. Davidović, V.I. Man’ko, M.A. 
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[37] P. Št’ovíček, J. Tolar, Rep. Math. Phys. 20 (1984) 157–170.
[38] U. Leonhardt, Phys. Rev. A 53 (1996) 2998–3013.
[39] W.K. Wootters, IBM J. Res. Dev. 48 (2004) 99.
[40] K.S. Gibbons, M.J. Hoffman, W.K. Wootters, Phys. Rev. A 70 (2004) 062101.
[41] A. Vourdas, Acta Appl. Math. 93 (2006) 197–214.
[42] S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, R. Simon, J. 

Phys. A, Math. Gen. 39 (2006) 1405.
[43] A.B. Klimov, J.L. Romero, G. Björk, L.L. Sánchez-Soto, J. Phys. A, Math. Theor. 40 

(2007) 3987.
[44] E.R. Livine, J. Phys. A, Math. Theor. 43 (2010) 075303.
[45] S.N. Filippov, V.I. Man’ko, Phys. Scr. 2011 (2011) 014010.
[46] S.N. Filippov, V.I. Man’ko, Phys. Scr. 83 (2011) 058101.
[47] S.N. Filippov, V.I. Man’ko, J. Russ. Laser Res. 32 (2011) 56–67.
[48] J.P. Paz, A.J. Roncaglia, M. Saraceno, Phys. Rev. A 72 (2005) 012309.
[49] G. Björk, J.L. Romero, A.B. Klimov, L.L. Sánchez-Soto, J. Opt. Soc. Am. B 24 (2007) 

371–378.
[50] U. Seyfarth, L.L. Sánchez-Soto, G. Leuchs, Phys. Rev. A 91 (2015) 032102.
[51] V.V. Dodonov, V.I. Man’ko, Phys. Lett. A 229 (1997) 335–339.
[52] V.I. Man’ko, O.V. Man’ko, J. Exp. Theor. Phys. 85 (1997) 430–434.
[53] V.A. Andreev, V.I. Man’ko, J. Exp. Theor. Phys. 87 (1998) 239–245.
[54] V.A. Andreev, O.V. Man’ko, V.I. Man’ko, S.S. Safonov, J. Russ. Laser Res. 19 (1998) 

340–368.
[55] V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, Phys. Lett. A 372 (2008) 

6490–6497.
[56] P. Adam, V.A. Andreev, A. Isar, V.I. Man’ko, M.A. Man’ko, Theor. Math. Phys. 186 

(2016) 346–364.
[57] P. Adam, V.A. Andreev, I. Ghiu, A. Isar, M.A. Man’ko, V.I. Man’ko, J. Russ. Laser 

Res. 35 (2014) 3–13.
[58] P. Adam, V.A. Andreev, I. Ghiu, A. Isar, M.A. Man’ko, V.I. Man’ko, J. Russ. Laser 

Res. 35 (2014) 427–436.

http://refhub.elsevier.com/S0375-9601(17)30623-0/bib46657272696532303131s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib46696C6970706F7632303132s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4761726F6E32303135s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib526F6D65726F32303135s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5747s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib48s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4Bs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib47s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib53s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4347s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib434732s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib484F4Cs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib484F4Cs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5454s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib485357s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib485357s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4B43s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4B43s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D57s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D57s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib535As1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5753s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5753s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D54s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D5432s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D5433s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4265727472616E6431393837s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib566F67656C31393839s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib536D697468657931393933s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib536D697468657931393933s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib494D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib494D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5354s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib46464Cs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib46464Cs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4272696631393939s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib566F757264617332303036s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41444D31s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41444D31s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41444D32s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41444D32s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib446F776C696E6731393934s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4B61737472757032303136s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib54696C6D6132303136s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib54696C6D6132303136s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4A5343s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib5054s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4C656F6E686172647431393936s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib574B57s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib474857s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4156s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib434D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib434D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4B5253s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4B5253s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib45524Cs1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib464D31s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib464D32s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib464D33s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib50617A32303035s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib426A6F726B32303037s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib426A6F726B32303037s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib536579666172746832303135s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib444Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4F4D4Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib414Ds1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib414D4D53s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib414D4D53s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D5356s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib4D4D5356s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D4D33s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D4D33s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D31s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D31s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D32s1
http://refhub.elsevier.com/S0375-9601(17)30623-0/bib41414D32s1

	Minimal sets of dequantizers and quantizers for ﬁnite-dimensional quantum systems
	1 Introduction
	2 Dequantizers and quantizers
	3 Minimal sets of dequantizers and quantizers
	4 Self-dual systems
	5 Conclusion
	Acknowledgements
	References


