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We study a behavior of two-qubit states subject to tomographic measurement. In this Letter we propose
a novel approach to definition of asymmetry in quantum bipartite state based on its tomographic
Shannon entropies. We consider two types of measurement bases: the first is one that diagonalizes
density matrices of subsystems and is used in a definition of tomographic discord, and the second is
one that maximizes Shannon mutual information and relates to symmetrical form quantum discord. We
show how these approaches relate to each other and then implement them to the different classes of
two-qubit states. Consequently, new subclasses of X-states are revealed.
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1. Introduction

In general, measurements irreversibly change a state of quan-
tum system. Quantum tomography is an experimental method,
which restores a complete information about an unknown quan-
tum state using preparation of set of its copies and measurements
statistics obtained in different bases.

The main feature of quantum tomography is a complete char-
acterization of quantum states and processes directly from exper-
imental data. Quantum states of light were completely character-
ized via the method of balanced homodyne detection (BHD) [1].
These works inspired series of new experiments [2] as well as in-
tensive theoretical work on analysis and improvement of the BHD
setup [2,3]. Moreover, quantum tomography was used for charac-
terization of quantum states of current (voltage) in the Josephson
junction [4].

On the other hand, quantum tomography is an original pic-
ture of quantum mechanics, where quantum states are described
in terms of nonnegative probability distributions functions [5–7].
Quantum tomography is equivalent to other approaches to quan-
tum mechanics, and tomograms are directly related to quasi-
probability distribution functions [8,9].

One of the areas, where quantum tomography is of interest,
is consideration of correlation properties in bipartite states. As a
results of purely probabilistic description of states, tomographic
version of the Shannon entropy [10] and the Rényi [11,12] entropy
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naturally appear. Being a bridge between classical information the-
ory and quantum information theory [13], it allows to use some
well-known inequalities for Shannon and Rényi entropies for in-
vestigation of novel properties of quantum states [10–14]. Recently,
tomographic approach to quantum discord was suggested [15].
In particular, tomographic discord for two-qubit X-states was con-
sidered. This analysis posed an important problem of relation be-
tween original [16] and tomographic discords.

Another interesting question, posed in Ref. [17], is about the
role of asymmetry between parties of bipartite state in respect to
its properties. Due to such asymmetry, decoherence acting on dif-
ferent parties leads to different rates of correlation decay, so the
question about robustness of parties appears. For the purpose of
asymmetry investigation the method of quantum causal analysis
was proposed [18]. It was successfully implemented to two- [19]
and three- [20] qubit states and atom-field interaction [21], where
interesting conclusions were made.

In the current Letter we combine quantum causal analysis with
quantum tomography. We obtain two novel measures of bipar-
tite state asymmetry, based on tomographic discord and symmet-
ric version [22] of quantum discord. We show that tomographic
discord is not greater than symmetric quantum discord. For a
demonstration of obtained results we consider the simplest case
of bipartite system, and show that even for them nontrivial phe-
nomena occur.

The Letter is organized as follows. We start from brief con-
sideration of quantum causal analysis in Section 2 and quantum
tomography in Section 3. In Section 4 we show how quantum
causal analysis can be modified via tomography. In Section 5 we
implement tomographic causal analysis different classes of two-
qubit states. The results of the Letter are summed up in Section 6.
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2. Quantum causal analysis

Quantum causal analysis [18–21] is a formal method for a
treatment of informational asymmetry between parties of bipartite
states. The term “causal” comes from classical causal analysis (see,
e.g. [23]), where a such asymmetry can be related to real causal
connection between two processes. In the quantum domain the
conception of causality usually is considered in framework of chan-
nels [24] or probability wave propagation [25]. Nevertheless, it is
convenient to introduce formal definitions of “causes” and “effects”
in bipartite states, however, one should understand them only as
labels.1

The idea of quantum causal analysis is the following. Con-
sider a bipartite quantum system AB in the Hilbert space H =
HA ⊗ HB . It is described via density operator ρ̂AB ∈ Ω(HAB) with
ρ̂A = TrB ρ̂AB ∈ Ω(HA) and ρ̂B = TrA ρ̂AB ∈ Ω(HB) being corre-
sponding density operators of subsystems. Here Ω(H) is the set
of positive operators of unit trace (density operators) in a Hilbert
space H. The basic quantity of quantum information theory is the
von Neumann entropy given by

S X ≡ S[ρ̂X ] = −Tr[ρ̂X log ρ̂X ], X ∈ {A, B,AB}.
Here we restrict our consideration to finite dimensional Hilbert
spaces and take the logarithm to base 2 (i.e., we measure entropy
in bits).

The amount of correlations between A and B is given by the
(symmetric) quantum mutual information

IAB = S A + S B − SAB, IAB = IBA. (1)

To describe a possible asymmetry of correlations we introduce
a pair of independence functions

i A|B = SAB − S B

S A
= 1 − IAB

S A
,

iB|A = SAB − S A

S B
= 1 − IAB

S B
,

which have the following properties: (i) they take values from −1
to 1 and the less iY |X is, the stronger X defines Y (iY |X = −1 cor-
responds to maximal quantum correlations, iY |X = 0 corresponds
to Y being a classical one-valued function of X , and iY |X = 1 cor-
responds to Y being independent from X); (ii) negative values cor-
respond to negative conditional entropy and imply a presence of
entanglement between partitions; (iii) for all pure entangled states
ρ̂AB = |Ψ 〉AB〈Ψ | the both independence functions take minimal val-
ues (i A|B = iB|A = −1); (iv) in general, for mixed states relation
i A|B �= iB|A holds.

Further, we can introduce the following formal definitions: in
bipartite state ρ̂AB with S A �= S B the party A is the “cause” and B
is the “effect” if i A|B > iB|A . Vice versa, one has B being the “cause”
and A being the “effect” if iB|A > i A|B .

Finally, we need to introduce a measure of asymmetry based
on independence functions. In the current Letter it is convenient
to use difference

dAB = i A|B − iB|A = IAB
S A − S B

S A S B
, dAB ∈ (−2,2). (2)

The zero value is obtained for symmetric or non-correlated states,
while the extreme values are obtained in cases when the entropy
of one subsystem tends to zero, while the entropy of another
does not, and mutual information takes the maximal possible value
which is doubled entropy of the first subsystem.

1 The question about connection between asymmetry in bipartite states and real
causality is interesting, however, it is beyond the present work scope.
3. Quantum tomography

Quantum tomography suggests physical picture of quantum
mechanics as well as it has interesting mathematical structure.
Mathematical aspects of quantum tomography are well understood
in terms of group theory [26], C∗ algebra [27] and groupoids [28].

Following [26], we define quantum tomograms thought map-
ping of ρ̂ ∈ Ω(H) on a parametric set of probability distribution
functions

ρ̂ ∈ Ω(H)
G(g)−−→ T {g,m}, (3)

where m is a physical observable, G(g) is a transformation group
with parametrization by g , and parametric set T {g,m} is called
quantum tomogram of the state ρ̂ . From physical point of view,
every element of parametric set T {g,m} is a probability of obser-
vation value m after transformation G.

In case of continuous variables, i.e. when dimH = ∞, group
Sp(2n,R) of phase space symplectic transformation plays role of
transformation group G(g). Mapping (3) at that rate reads

T (Q ,μ,η) = 〈Q ,μ,η|ρ̂|Q ,μ,η〉, ρ̂ ∈ Ω(H),

where |Q ,μ,η〉 is an eigenvector of the Hermitian operator μq̂ +
η p̂ for the eigenvalue Q . One can see that T (Q ,μ,η) is positive
and normalized on Q . This representation is directly related with
star-product quantization [8] and the Weyl–Heisenberg group [26].

The BDH setup reduces to mixing on beam splitter of measur-
able (weak) field and strong coherent field with changing phase θ .
In terms of (3) the observable is Q̂ = q̂ cos θ + p̂ sin θ , where an-
gle θ ∈ R/2πZ could be interpreted as rotation angle of the phase
space.

In case of system with discrete variables (dimH < ∞) map-
ping (3) transforms to the following relation

Tm(U ) = 〈m|U ρ̂U †|m〉, ρ̂ ∈ Ω(H), (4)

where normalization and positivity follows directly from defini-
tion (4)∑

m

Tm(U ) = 1, Tm(U ) ≥ 0.

In case U ∈ SU(2) definition (4) reduces to general definition
for spin tomograms

U =
(

α β

−β∗ α∗
)

, |α|2 + |β|2 = 1.

Here α,β ∈ C are the Cayley–Klein parameters. In U ∈ SU(2)

case the Euler angles [6] and quaternions [7] can be used for rep-
resentation of tomograms [29].

4. Tomographic approach to quantum causal analysis

Here we suggest to use an approach of quantum causal anal-
ysis to bipartite system asymmetry with respect to observable
outcomes described by quantum tomography. The bipartite state
tomogram reads

TAB(U A ⊗ U B) = {
TABij (U A ⊗ U B)

}
,

and reduced tomograms have the form

TA(U A) =
{∑

j

TABij (U A ⊗ U B)

}
,

TB(U B) =
{∑

TABij (U A ⊗ U B)

}
.

i



1706 E. Kiktenko, A. Fedorov / Physics Letters A 378 (2014) 1704–1710
Here we imply that two parties are measured in local bases de-
scribed by U A and U B . Since tomograms being classical probability
distributions one can introduce the Shannon entropy [10]

H X (U ) = −
∑

m

TXm(U ) logTXm (U ),

which depends on unitary transformation U or, in other words, on
the way we measure the system.

The value of observed correlations in bipartite system AB is de-
scribed by classical mutual information

JAB(U A, U B) = H A(U A) + H B(U B) − HAB(U A ⊗ U B) (5)

being a straightforward analog of (1).
We see that correlation also depends on the way we “look” at

bipartite system and the question of the particular measurement
setup (particular U A and U B ) appears. This question is directly
relates to the quantum discord which is the difference between
quantum mutual information (1) and observable correlations ob-
tained in spirit of (5). Here we can point out two approaches.

4.1. “Tomographic” scheme

First approach is to choose rotation operators in such a way that
density matrices of subsystems after rotation become diagonal. We
denote these operators as U 0

A and U 0
B and the corresponding tomo-

gram as T tom
AB = TAB(U 0

A ⊗ U 0
B). The direct corollary of this choice

is that subsystem Shannon entropies become equal to their von
Neumann analogues

H A
(
U 0

A

) = S A, H B
(
U 0

B

) = S B .

This approach corresponds to the tomographic discord intro-
duced in [15]:

Dtom
AB = IAB − J tom

AB = HAB
(
U 0

A ⊗ U 0
B

) − SAB,

with J tom
AB = JAB(U 0

A, U 0
B).

The asymmetry is given by following values of “tomographic”
independence functions

itom
A|B = H A(U 0

A) − J tom
AB

H A(U 0
A)

= 1 − J tom
AB

S A
≥ 0,

itom
B|A = H B(U 0

B) − J tom
AB

H B(U 0
B)

= 1 − J tom
AB

S B
≥ 0.

We obtain that they are greater of equal to their quantum analo-
gies

itom
A|B − i A|B = Dtom

AB

S A
≥ 0, itom

B|A − iB|A = Dtom
AB

S B
≥ 0.

The “tomographic” asymmetry defined by

dtom
AB = itom

A|B − itom
B|A = J tom

AB
S A − S B

S A S B

has the same sign as its quantum analog dAB but with less or equal
magnitude

dtom
AB

dAB
= J tom

AB

IAB
= 1 − Dtom

AB

IAB
≤ 1. (6)

Finally, one can see that the conclusions about the asymmetry
made with quantum causal analysis using original density opera-
tor ρ̂AB and classical causal analysis using tomogram TAB(U 0

A ⊗ U 0
B)

qualitatively are the same, however, the measurement process
smoothes the original asymmetry on the value of Dtom.
AB
4.2. “Optimal” scheme

The second approach is to use bases that optimize (i.e., maxi-
mize) the classical mutual information{

U opt
A , U opt

B

} = arg max
U A ,U B

{
JAB(U A, U B)

}
. (7)

We denote the corresponding tomogram as

T opt
AB = TAB

(
U opt

A ⊗ U opt
B

)
.

This approach corresponds to the symmetric version of quan-
tum discord, studied in detail in [22]

Dopt
AB = IAB − J opt

AB ,

J opt
AB = max

U A ,U B

JAB(U A, U B)

Analogically, “optimal” pair of independence functions has the
following form

iopt
A|B = 1 − J opt

AB

Hopt
A

≥ 0, iopt
B|A = 1 − J opt

AB

Hopt
B

≥ 0

where we use definitions

Hopt
A = H A

(
U opt

A

)
, Hopt

B = H B
(
U opt

B

)
.

Differences between these functions and their quantum analo-
gies are given by

iopt
A|B − i A|B = IAB Hopt

A − J opt
AB S A

S A Hopt
A

≥ 0,

iopt
B|A − iB|A = IAB Hopt

B − J opt
AB S B

S A Hopt
B

≥ 0,

since we can use inequalities [11]

Hopt
A ≥ S A, Hopt

B ≥ S B , IAB ≥ J opt
AB . (8)

The situation with asymmetry, defined by

dopt
AB = iopt

A|B − iopt
B|A = J opt

AB

Hopt
A − Hopt

B

Hopt
A Hopt

B

,

become quite nontrivial because the sign of difference Hopt
A − Hopt

B
can coincide or not with the sign of S A − S B . Therefore the conclu-
sion about asymmetry between A and B made by original quan-
tum causal analysis and in the considered “optimal” scheme can
be quite different.

The relation between magnitudes

dopt
AB

dAB
= J opt

AB

IAB

S A S B(Hopt
A − Hopt

B )

Hopt
A Hopt

B (S A − S B)

stays to be indefinite as well.

4.3. “Tomographic” scheme vs. “optimal” scheme

The both approaches for studying observed classical correla-
tions in quantum system seem to be quite natural, however, they
are different. The main feature of “optimal” (symmetric) discord
is that it is greater or equal to “tomographic” one just because of
maximization procedure

Dtom
AB − Dopt

AB = max
{

JAB(U A, U B)
} − JAB

(
U 0

A, U 0
B

) ≥ 0. (9)

U A ,U B
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On the other hand we cannot say anything about difference be-
tween independence functions

iopt
A|B − itom

A|B = J tom
AB Hopt

A − J opt
AB S A

S A Hopt
A

iopt
B|A − itom

B|A = J tom
AB Hopt

B − J opt
AB S B

S A Hopt
B

,

since we can use (8) and J tom
AB ≤ J opt

AB .
The same is about relation between asymmetries

dopt
AB

dtom
AB

= J opt
AB

J tom
AB

S A S B(Hopt
A − Hopt

B )

Hopt
A Hopt

B (S A − S B)
,

which also depends on the particular quantum state.
We see the “optimal” scheme, which is interesting from the

practical point of view as it affords maximal amount observed cor-
relations, gives obscure conclusions about the original asymmetry,
while “tomographic” scheme keeps original asymmetry properties
but does not demonstrate maximal possible classical correlations.
In the next section we are going to consider the both approaches
to the two-qubit states which are the simplest examples of bipar-
tite quantum systems.

5. Asymmetry in two-qubit states

We are going to discuss three classes of two-qubit states.

(i) We start with the simplest case of pure two-qubit entangled
states, which can be treated analytically.

(ii) Then we consider so-called X-states (states with definite con-
straints on density matrix). They are generally mixed and we
use method of random state generation for the purpose of
their investigation (for a details, see Appendix A).

(iii) Finally, we look at arbitrary two-qubit mixed states, again by
means of random state generation (Appendix B).

For these three classes we calculate all discussed measures of
correlations (IAB , J tom

AB , J opt
AB ) and asymmetry (dAB , dtom

AB , dopt
AB ) as

well as investigate relation between them.

5.1. Pure entangled states

From the Schmidt decomposition it follows that any two-qubit
pure entangled state |Ψ 〉AB can be presented in the form

|Ψ 〉AB = α|u0, v0〉AB +
√

1 − α2|u1, v1〉AB, α ∈ (0,1),

where sets{|u0〉A, |u1〉A
}
,

{|u0〉B , |u1〉B
}

produce bases in Hilbert spaces HA and HB .
As it was already said, from the viewpoint of quantum causal

analysis pure states are completely symmetric

i A|B = iB|A = −1, dAB = 0.

The “tomographic” and “optimal” approaches give the same
conclusions about correlations

J tom
AB = J opt

AB = −α2 logα2 − (
1 − α2) log

(
1 − α2),

as well as about asymmetry

itom
A|B = itom

B|A = iopt
A|B = iopt

B|A = 0, dtom
A,B = dopt

A,B = 0.

Therefore, one can see that the alternative approaches to quantum
causal analysis do not give any new results.
5.2. X-states

The two-qubit X-state is the one that has a density matrix in
the form of

ρAB =
⎛
⎜⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎞
⎟⎠ . (10)

The constraints on matrix elements are the following: (i) all
the diagonal elements are positive (ρmm ≥ 0); (ii) trace is equal
to unit:

∑4
m=1 ρmm = 1; (iii) |ρ14|2 ≤ ρ11ρ44, |ρ23|2 ≤ ρ22ρ33. Its

eigenvalues have the form

λ1,2 = 1

2

(
ρ11 + ρ44 ±

√
(ρ11 − ρ44)2 + 4|ρ14|2

)
,

λ3,4 = 1

2

(
ρ22 + ρ33 ±

√
(ρ22 − ρ33)2 + 4|ρ23|2

)
,

that allows to obtain an explicit form of whole system von Neu-
mann entropy: SAB = −∑4

i=1 λi log λi .
The subsystem matrices are already diagonal

ρA =
(

ρ11+ρ22 0
0 ρ33+ρ44

)
,

ρB =
(

ρ11+ρ33 0
0 ρ22+ρ44

)
,

therefore U 0
A = U 0

B = Id2 are just 2 × 2 identity matrices. This fact
implies that

S A = −
2∑

i=1

ρAii logρAii , S B = −
2∑

i=1

ρBii logρBii

Due to the trivial form of U 0
A and U 0

B the tomogram T tom
AB just

consists of diagonal elements: T tom
AB = {ρmm}4

m=1. This allows to
get straightforward expressions for all “tomographic” characteris-
tics: J tom

AB , itom
A|B , itom

B|A and dtom
AB .

Nevertheless, the question about optimal measurement bases,
described by U opt

A and U opt
B , keeps to be open. In an effort to cal-

culate J opt
AB , iopt

A|B , iopt
B|A the iterative numerical algorithm has been

used.
The main results for randomly generated data set of N = 1000

X-states are presented in Fig. 1. The comparison of J tom
AB and J opt

AB
reveals two types of X-states:

(i) for the first type (crosses in Fig. 1) “optimal” basis turns to
be the same as tomographic and the following equality holds

U opt
A = U opt

B = U 0
A = U 0

B = Id2, J tom
AB = J opt

AB ;
(ii) for the second type (circles) the “optimal” basis is differ-

ent from the “tomographic” and gives an advantage in correlations
making the following inequality holds true

J opt
AB > J tom

AB .

The detailed study of the states of second type has shown the
“optimal” basis turns to be the one, which maximizes the both en-
tropies: Hopt

A = Hopt
B = 1, making the state to look symmetric with

dopt
AB = 0 (see Fig. 1(b)). This symmetrization implies the following

form of unitary operators

U opt
A =

(
0 e−iφA

eiφA 0

)
H, U opt

B =
(

0 e−iφB

eiφB 0

)
H

with H being the 2×2 Hadamard transformation and φA , φB being
unique parameters for a particular X-state.
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Fig. 1. Comparison of different characteristic for the data set of N = 1000 randomly generated X-states: (a) mutual information obtained in “tomographic” scheme vs the
one in “optimal” scheme; (b) asymmetry obtained in “tomographic” scheme vs the one in “optimal” scheme; (c) asymmetry obtained in “tomographic” scheme vs the one
obtained by quantum causal analysis; (d) asymmetry obtained in “optimal” scheme vs the one obtained by quantum causal analysis. States with T tom

AB = T opt
AB are depicted

by crosses, all others – by circles.
The comparison of dtom
AB with dAB , presented in Fig. 1(c), shows

a direct realization of the property (6): the original asymme-
try always turns to be stronger than the one obtained from
TAB(U 0

A ⊗ U 0
B).

The relation between dopt
AB and dAB (Fig. 1(d)) clearly demon-

strates an existence of huge subclass of X-states with asymmetric
quantum correlations and totally symmetric maximum available
classical one.

5.3. Arbitrary mixed states

Finally, we are going to consider an arbitrary mixed two-qubit
states in the general form

ρAB =
4∑

i=1

pi|Ψi〉AB〈Ψi |,
4∑

i=1

pi = 1

with |Ψi〉AB being pure two-qubit state.
The obtained results for randomly generated data set of N =

1000 arbitrary mixed states are presented in Fig. 2. The first plot
(Fig. 2(a)) is a demonstration of inequality (9): it shows that corre-
lations in “optimal” scheme are always higher than in “tomograph-
ic” one.

The situation depicted in Fig. 2(b) confirms the result from pre-
vious section that there is no explicit relation between dtom

AB and

dopt
AB for arbitrary state. All combinations are possible: “tomograph-

ic” and “optimal” schemes can present the same or the opposite
conclusions about a direction of asymmetry. The strength of asym-
metry in “tomographic” scheme also can be larger or smaller than
the one in “optimal” scheme.

Nevertheless, Fig. 2(b) shows an evident correlation between
dopt

AB and dtom
AB . The exact value of correlation coefficient for the

generated data set is r = 0.72 and linear regression takes the form
dopt

AB = 0.52dtom
AB . Taking it into account we can say that states with

dopt
AB dtom

AB > 0 are the more typical (in the generated data set ≈70%
of states fulfills this condition).
The comparison of dtom
AB with dAB in Fig. 2(c) confirms inequal-

ity (6): the direction of asymmetry given by “tomographic” scheme
coincides with the one given by quantum causal analysis, while the
magnitude of the original asymmetry is always higher than the ob-
served one.

Finally, the comparison of dopt
AB with dAB depicted in Fig. 2(d)

shows again the whole variety of possible combinations. There is
also a correlation between these two quantities but it is not so
clear as in Fig. 2(b) (correlation coefficient r = 0.58 with linear

regression dopt
AB = 0.17dAB).

6. Conclusion

The original quantum causal analysis introduces a measure of
asymmetry in bipartite quantum states based on inequality of their
subsystems’ von Neumann entropies. To obtain this value one need
to have a density operator of the studied system. In the cur-
rent Letter we have considered a novel approach to a definition
of state’s asymmetry, which is based on observable tomographic
distributions of bipartite state. As variation of measurement ba-
sis leads to a change of tomogram of state, we have restricted
ourself with two variants of bases: (i) the one that diagonalize a
subsystems’ density matrices, (ii) the one that maximizes an ob-
served amount of classical correlations between subsystems. We
have shown that these two approaches closely relate to tomo-
graphic and symmetric versions of quantum discord correspond-
ingly, that is why we named the first approach “tomographic” and
second one – “optimal”.

The comparison of “tomographic” modification of quantum
causal analysis with the original one has shown that they give the
same conclusion about direction of asymmetry, but the magnitude
of asymmetry in “tomographic” scheme is always non-greater than
the one obtained by the original method.

On the other hand, in the “optimal” scheme the both: direction
and magnitude of asymmetry, can differ from the values obtained
by original quantum analysis.
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Fig. 2. Comparison of different characteristic for the data set of N = 1000 randomly generated two-qubit states: (a) mutual information obtained in “tomographic” scheme
vs the one in “optimal” scheme; (b) asymmetry obtained in “tomographic” scheme vs the one in “optimal” scheme; (c) asymmetry obtained in “tomographic” scheme vs the
one obtained by quantum causal analysis; (d) asymmetry obtained in “optimal” scheme vs the one obtained by quantum causal analysis. Solid lines stand for expressions of
linear regression.
The implementation of these approaches to different classes of
two-qubit states had shown the following main results: (i) pure
entangled states are always symmetric in respect to all approaches;
(ii) there are two subclasses of X-states: for the first one the “to-
mographic” and “optimal” approaches give the same results, and
for the second one “optimal” approach demonstrates the full sym-
metry of the considered state, while original and “tomographic”
approaches testifies some asymmetry presence; (iii) in spite of
the fact that “tomographic” and “optimal” schemes can give very
different conclusion about asymmetry for the arbitrary two-qubit
states there is an evident correlation between their results.

Finally, the question about practical aspect of obtained results
appears. As it was shown in previous works [19–21] the asymme-
try of bipartite state observed by quantum causal analysis plays
role in interaction of the such state with environment. “Tomo-
graphic” approach can reveal this asymmetry without full recon-
struction of the state. But questions about asymmetry “optimal”
scheme keep to be open. Is their any particularly features of states
with different directions of “optimal” and “tomographic” (origi-
nal) asymmetry? Is their any protocols where the such features
can play a crucial role? All these questions seem to be impor-
tant for a deeper understanding of how the results of local mea-
surements performed on bipartite quantum system relates to its
original properties as well as in practical application in quantum
information technologies.
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Appendix A. Generation of X-states

For the generation of X-states (10) the following algorithms
was used. The diagonal elements were generated in the form

ρii = pi∑4
j=1 p j

, pi = U(0,1),

where U(a,b) stands for uniform distribution in [a,b]. Non-
diagonal elements were generated in the form

ρ14 = ρ∗
41 = α1

√
ρ11ρ44 eiφ1 , α1(2) = U(0,1)

ρ23 = ρ∗
32 = α2

√
ρ22ρ33 eiφ2 , φ1(2) = U(0,2π)

In spite of the fact that considered method does not generate
states in uniform way in respect to the Haar measure it is quite
useful for the purposes of our study.

Appendix B. Generation of arbitrary two-qubit mixed state

The arbitrary two-qubit mixed states were generated in the
form

ρAB = 1∑4
j=1 p j

4∑
k=1

pk〈ψk|ψk〉−1|ψk〉AB〈ψk|,

where

|ψk〉 =
⎛
⎜⎝
N (0,1)

N (0,1)

N (0,1)

N (0,1)

⎞
⎟⎠ + i

⎛
⎜⎝
N (0,1)

N (0,1)

N (0,1)

N (0,1)

⎞
⎟⎠ ,

with pk = U(0,1) and N (μ,σ ) being normal distribution with ex-
pectation μ and standard deviation σ . According to Ref. [30] this
method gives uniform distribution of states.
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