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In the tomography representation we propose a new approach, which describes the dynamics of quantum
particles by the Kolmogorov equations for non-negative propagators. To solve the Kolmogorov equations
we use a diffusive Markovian random processes described by the related nonlinear stochastic Langevin
equations. As a result the dynamics of quantum particles is described by the proposed numerical scheme
combining both Langevin dynamics and Monte Carlo methods. We test the developed approach by
applying it to the wave packet dynamics in harmonic potentials and to particle tunneling through a
barrier.
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0. Introduction

In the standard formulation of quantum mechanics states of a
system are described by the wave functions [1] or the density op-
erators [2,3]. However quantum description of the system can be
given in many other ways [4], for example, in the Wigner–Moyal,
Feynman or Nonequlibrium Green functions representations [5–7].
Despite the unity of all formulations such objects as the wave
functions, probability distributions, the Wigner functions or den-
sity operators differ in essential way from each other. Let us note
that the probability distribution describing a quantum system is its
fundamental characteristic. The probability representation of quan-
tum mechanics or tomography representation was recently pro-
posed in [8–12]. The idea of the tomography representation is to
rotate and to scale the reference frame in the phase space and to
work with distributions in the new frames: X = μq + νp, where q
and p are the coordinate and momentum (μ, ν are the parameters
of scaling and rotating). The probability representation is remark-
able as it describes the quantum state in terms of a non-negative
distribution function (the tomogram or marginal distribution), di-
rectly measurable in experiments on the state reconstruction. The
tomogram is a probability distribution completely describing a
quantum or classical state of the system and is very convenient
for comparison results in the framework of one formalism. Sign
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conservation of the tomogram can be valuable in computer sim-
ulations [13,14], for example, to overcome the “sign problem” in
simulation of Fermi systems [15]. An important advantage of the
probability representation is that the transitions between quantum
states are descried by the non-negative probabilities (propagators)
instead of complex probability amplitudes.

There are two equivalent probability representations of quan-
tum mechanics: namely ‘symplectic’ [22,23] and ‘center-of-mass’
[16–21,24,25] tomography. For example in the symplectic tomog-
raphy the 1D system of N quantum particles is described by 3N
variables namely by three N-dimensional vectors �X , �μ and �ν .
However the symplectic tomogram contains the same amount of
information about the system as the density matrix does due to
the fact that the symplectic tomogram is a homogeneous function
and only 2N of its variables are independent. Sure, this increase
in the number of variables is inconvenient in applications even if
it implies the description of the system with non-negative distri-
bution function. Alternatively the more convenient ‘center-of-mass’
tomogram depends on 2N +1 variables—the ‘center-of-mass’ scalar
variable X = ∑

Xi, �X = {Xi}—and two N-dimensional vectors �μ, �ν .
The homogeneous ‘center-of-mass’ tomogram depends on 2N in-
dependent variables and this representation is also equivalent to
the other formulations of quantum mechanics due to existence of
the invertible maps for connection between different representa-
tions of quantum mechanics.

In this Letter in the framework of the ‘center-of-mass’ tomogra-
phy representation of quantum mechanics we use the Kolmogorov
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equations to describe the dynamics of quantum systems. The Kol-
mogorov equations for the Green functions can be solved by differ-
ent regular or stochastic methods. In the simplest cases analytical
methods can be used, while in general for low dimensional cases
numerical schemes on grids are favorable. We have developed a
new numerical stochastic approach based on solution of the gen-
eralized stochastic Langevin (GSL) equations being equivalent in
stochastic sense to the Kolmogorov equations. The developed ap-
proach combines both Monte Carlo (MC) sampling and numerical
solution of GSL equation for the calculation of average values of
quantum operators. Normally MC methods are very effective for
calculations of multidimensional integrals as these methods allow
to find regions giving the main contribution to the integrals and
to ignore other regions, which are not important in integral sense.
The Langevin dynamics is also very effective in multidimensional
case. We discuss the basic relations and the main ideas of the
developed approach, compare the obtained results for average tra-
jectories, average momentum, average energy and related variances
with independent calculations for quantum oscillator and quantum
particles tunneling through a barrier.

1. One-random-variable tomography

Below, following the above mentioned papers [16–21,24,25], we
shortly describe the scheme for the center-of-mass tomography.
Let us consider dynamics of quantum particles described by the
Hamiltonian with generic potential energy Ṽ

Ĥ = �̂p2

2m
+ Ṽ (�q). (1)

To consider the evolution of the quantum system let us start from
the von Neumann equation

ih̄
∂ρ̂

∂ t̃
= [Ĥ, ρ̂], (2)

which determines the time evolution of the density matrix ρ̂ (for
example with matrix elements ρ( �q′, �q′′, t) = Ψ (q′, t)Ψ ∗(q′′, t)).

The quantum mechanics in Wigner representation can be de-
scribed in terms of the Wigner function defined by the invertible
maps:

W (�q, �p, t) =
∫

d�ξ
(2π/α1)Ñ

ρ

(
�q + �ξ

2
, �q − �ξ

2
, t

)
e−iα1〈�p|�ξ〉, (3)

ρ( �q′, �q′′, t) =
∫

d�p W

( �q′ + �q′′
2

, �p, t

)
eiα1〈�p|( �q′− �q′′)〉, (4)

where Ñ = Nd, d denotes the dimensionality of the space, N is
the number of particles and dimensionless particle coordinates �q =
q̃/σ0 and momenta �p = p̃/p0 are in units of σ0 and p0, while
α1 = p0σ0/h̄. Eq. (4) is the inverse map with respect to Eq. (3).

The time evolution equation of the quantum system in terms
of the Wigner function can be obtained from the von Neumann
equation (2) and has the form:

∂W

∂t
+

〈 �̃p
m

∣∣∣∣∂W

∂ �̃q

〉
= i

h̄

[
Ṽ

(
�̃q − h̄

i

2

∂

∂ �̃p

)
− Ṽ

(
�̃q + h̄

i

2

∂

∂ �̃p

)]
W . (5)

The connection between the ‘center-of-mass’ tomograms and
the Wigner functions is given by the following invertible maps:

w̃(X, �μ, �ν, t) =
∫

dk d�q d�p
2π

W (�q, �p, t)e−ik(X−〈 �μ|�q〉−〈�ν|�p〉), (6)

W (�q, �p, t) =
∫

dX d �μd�ν
2Ñ

w̃(X, �μ, �ν, t)ei(X−〈 �μ|�q〉−〈�ν|�p〉). (7)

(2π)
Consequently the evolution equation for the marginal distribution
function according to the definition (3) and Eqs. (5), (6) can be
obtained in the form:

∂ w

∂t
−

〈
�μ
∣∣∣∣ ∂

∂ �ν w

〉
− i

[
V

(
− ∂

∂ �μ
1

∂/∂ X
− i

�ν
2

∂

∂ X

)

− V

(
− ∂

∂ �μ
1

∂/∂ X
+ i

�ν
2

∂

∂ X

)]
w = 0. (8)

Eq. (8) can be rewritten as

∂ w

∂t
+ ∂ w

∂ X
G X +

〈
∂ w

∂ �ν
∣∣∣∣�Gν

〉
+

〈
∂w

∂ �μ
∣∣∣∣�Gμ

〉
= 0. (9)

An example for the functions G is given below. The evolution equa-
tion (9) has the form of a continuity equation for the quantum
tomogram

dw

dt
= ∂ w

∂t
+ ∂ w

∂ X
Ẋ +

〈
∂ w

∂ �ν
∣∣∣∣ �̇ν

〉
+

〈
∂w

∂ �μ
∣∣∣∣ �̇μ

〉
= 0, (10)

where the equations Ẋ(t) = G X , �̇ν(t) = �Gν and �̇μ(t) = �Gμ define
trajectories in X, �ν, �μ space. The quantum tomograms w are non-
negative and can be used as distribution functions.

2. Propagators and Kolmogorov equations

Let us now turn to the propagators (the Green functions) Π

describing the time evolution of quantum systems independent of
the initial state. The propagator Π obeys an evolution equation
which follows from Eq. (9)

∂Π

∂t
+ ∂Π

∂ X
G X +

〈
∂Π

∂ �ν
∣∣∣∣�Gν

〉
+

〈
∂Π

∂ �μ
∣∣∣∣�Gμ

〉
= δ(t − t0)δ(X − X0)δ( �μ − �μ0)δ(�ν − �ν0), (11)

where δ is the Dirac delta function and with the initial condition
at (�t = t − t0 = 0)

Π(X, �μ, �ν, t; X0, �μ0, �ν0, t0) = δ(X − X0)δ( �μ − �μ0)δ(�ν − �ν0). (12)

Using the decomposition of unity 1 ≡ ∑
i[θ(qi − σ/2) − θ(qi +

σ/2)] ≡ ∑
i ϕ(qi) in the limit of σ → 0 (qi = σ × i, i = 0,∓1, . . . ,

θ(q) = 0 for q < 0 and θ(q) = 1 for q > 0) one can present a gen-

eral Hamiltonian Ĥ = p̂2

2m + V̂ (q) as a sum of its local harmonic
approximations in the vicinity of each point qi . Let us illustrate
this for the simple example for one particle in the 1D case

Ĥ =
[

p̂2

2m
+ V̂ (q)

]
× 1 =

∑
i

ϕ(qi)Ĥqi



∑

i

ϕ(qi)

[
p̂2

2m
+ V̂ (qi) + dV̂ (qi)

dqi
(q − qi)

+ 1

2

d2 V̂ (qi)
2

dq2
i

(q − qi)
2 + · · ·

]
. (13)

According to Eqs. (8)–(10) the local functions G and related tra-
jectories for each point qi are defined by Ẋ(t) = G X = f ν, μ̇(t) =
Gμ = ω2ν, ν̇(t) = Gν = −μ with ω2 = d2 V (qi)

dq2
i

, β2 = −ω2, f =
ω2qi − dV (qi)

dqi
. For small �t = t − t0 �= 0 the quasiclassical Green

function Π̃ in the small vicinity of point qi can be obtained ana-
lytically in the form [8,9]

Π̃(z1, t1; z2, t2|qi)

= δ

(
X2 − X1 − f

(
ν1

sinh(β(t2 − t1))

β
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+ μ1(cosh(β(t2 − t1)) − 1)

ω2

))

× δ

(
μ2 − μ1 cosh

(
β(t2 − t1)

) − ν1ω
2

β
sinh

(
β(t2 − t1)

))

× δ

(
ν2 − ν1 cosh

(
β(t2 − t1)

) + μ1

β
sinh

(
β(t2 − t1)

))
, (14)

where �t = t2 − t1 → 0.
The Chapman–Kolmogorov equation (generalized Markov equa-

tion) [8,26] for Π has the form

Π(z1, t1; z3, t3) =
∫

Π(z1, t1; z2, t2)Π(z2, t2; z3, t3)dz2, (15)

where t1 < t2 < t3, vector z is defined as |z〉 = |z1, . . . , zn〉 =
{X, �μ, �ν} and n = 2Ñ + 1. The propagator Π(X1, �μ1, �ν1, t1; X,

�μ, �ν, t) = Π(z1, t1; z, t) can be considered as transition probabil-
ity of a Markovian random process (MP) as the following relations
are satisfied

Π(z1, t1; z, t) � 0,

∫
dz Π(z1, t1; z, t) = 1. (16)

Treatment of Markovian process can be strongly simplified by
using the two partial differential equations proved by Kolmogorov
[27] in 1931 for diffusive MP. The first and the second Kolmogorov
equations with required accuracy have the forms

∂Π

∂t1
+

n∑
j=1

a j(z1, t1)
∂Π

∂z j
1

+ 1

2

n∑
j=1

n∑
l=1

b jl(z1, t1)
∂2Π

∂z j
1∂zl

1

= 0,

∂Π

∂t2
+

n∑
j=1

∂

∂z j
2

(
a j(z2, t2)Π

) − 1

2

n∑
j=1

n∑
l=1

∂2

∂z j
2∂zl

2

(
b(z2, t2)Π

) = 0,

(17)

where the drift and diffusion coefficients are implicitly defined by
the following relations respectively

a j(z, t) = lim
�t→0

1

�t

∫
Π(z, t; z̃, t + �t)

(
z̃ j − z j)dz̃,

b jl(z, t) = lim
�t→0

1

�t

∫
Π(z, t; z̃, t + �t)

(
z̃ j − z j)(z̃l − zl)dz̃. (18)

Limits of small �t relate to the quasiclassical approximation of the
Green function and can be explicitly calculated using the quasiclas-
sical propagator Π̃(z, t; z̃, t +�t|qi) (Eq. (14)). In this case the drift
a j(z, t|qi) and diffusion coefficients b jl(z, t|qi) as well as the prop-
agator Π(X1, �μ1, �ν1, t1; X, �μ, �ν, t|qi) should depend on the coor-
dinate qi and are correct only in its small vicinity. The second
Kolmogorov equation before its rigorous derivation by Kolmogorov
was used by physicists and is often called Fokker–Plank equation.
Generalization to 3D Hamiltonian and N particles is trivial.

The distributions w(X, �μ, �ν, t), related to different reference
frames (X = 〈 �μ|�q〉 + 〈�ν|�p〉), have different physical meanings. For
example, for the 1D case the tomogram w(X,1,0, t2) has the
physical meaning of the coordinate distribution and for small �t
its time evolution can be presented in the following form as it fol-
lows from Eqs. (8)–(10), (13)

w(X2,μ2|μ2=1, ν2|ν2=0, t2)

=
∑

i

w(X2,μ2|μ2=1, ν2|ν2=0, t2|qi)

=
∑

i

∫
dX1 dμ1 dν1

× Π(X1, �μ1, �ν1, t2; X2,μ2|μ2=1, ν2|ν2=0, t2 − �t|qi)

× w(X1, �μ1, �ν1, t2 − �t), (19)
where the propagator Π can be obtained as solution of Kol-
mogorov equations or the equivalent system of Langevin equations
(see below). Here each term in sum is the contribution of a dy-
namic trajectory (defined by qi ) in X, �ν, �μ space. The main contri-
bution to this sum can be calculated for example by Monte Carlo
methods sampling qi from tomogram w(X,μ|μ=1, ν|ν=0, t2). The
contribution of each trajectory is correct for small enough �t =
t2 − t1. A possible criterion for the correctness is the smallness
of the difference along the average trajectory 〈q(t2 − �t)〉 between
the exact potential V (〈q(t2 −�t)〉) and its harmonic approximation
V 〈q(t2)〉(〈q(t2 − �t)〉) taken at point 〈q(t2)〉 (for example, less than
0.001 percent). If this difference becomes larger then the next lo-
cal piece of solution (from t2 − �t to t2 − 2�t) can be obtained
by recurrent application of Eq. (19) replacing w(X,μ,ν, t2) by
w(X,μ,ν, t2 −�t) and w(X,μ,ν, t2 −�t) by w(X,μ,ν, t2 −2�t).
An analogous solution can be obtained for the momentum distri-
bution w(X,0,1, t2).

To be able to obtain the different distributions simultaneously
we assume that the product of the Green functions Π(U1, t2; U2,

t1|qi) = ∏s
k=1 Π(X1

k , �μ1
k , �ν1

k , t2; X2
k , �μ2

k , �ν2
k , t1|qi) defines s Marko-

vian random processes of |U (t)〉 = {Xk, �μk, �νk, (k = 1, . . . , s)} with
s different initial conditions |Uk(t2)〉 = {Xk(t2), �μk(t2), �νk(t2)}
at t = t2. Let us define the initial function w as the prod-
uct w(U , t1) = ∏s

k=1 w(X1
k , �μ1

k , �ν1
k , t1) in direct sum of {X, �μ, �ν}

spaces. So vector |U (t)〉 is defined by the expression |U 〉 = {z1, . . . ,

zn} = {X1, �μ1, �ν1, . . . , Xs, �μs, �νs}, n = (2Ñ + 1) ∗ s and all multidi-
mensional distributions of the Markovian random processes |U (t)〉
are defined by the initial distribution w(U , t1) and transition prob-
ability Π(U1, t2; U2, t1|qi). Let us assume that s = 1 always relates
to initial conditions defining coordinate distributions.

3. Stochastic differential equations

Quantum dynamics of the system is defined by the time evolu-
tion of the initial tomogram according to Eqs. (8), (17). To obtain
the time evolution Eq. (17) can be replaced by the system of non-
linear GSL equations of the form [26,27]

dU j(t)

dt
= ψ j

( �U (t), t|qi
) +

n∑
l=1

g jl(qi)ξl(t) ( j = 1,n), (20)

where ψ j and g jl are given deterministic functions of their argu-
ments, while ξl(t) are independent delta correlated random pro-
cesses of white noise with zero expectation value. These equations
allow to solve equations Eqs. (8), (17) if the drift and diffusion co-
efficients in Eq. (17) are connected with functions ψ j and matrix
g jl in Eq. (20) by the following expressions [26,27]

b jl(U , t|qi) =
n∑

k=1

g jk glk,

a j(U , t|qi) = ψ j(U , t|qi) + 1

2

n∑
k=1

n∑
l=1

∂ g jl

∂zk
gkl. (21)

So the time evolution of any initial tomogram (Eq. (19)) can be
calculated as the average over an ensemble of random Markovian
processes described by the systems of nonlinear GSL (Eq. (20)).

To finish this discussion, let us note that the expression

1

2

n∑
k=1

n∑
l=1

∂ g jl(U , t|qi)

∂U k
gkl(U , t|qi)

= lim
�t→0

1

�t
M

{
n∑

g jl

[
U + �U (t)

2
, t|qi

]
�ηl(t)

}
(22)
l=1
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can be calculated according to the definition of g from the relation

b

[
U + �U (t)

2

∣∣∣∣qi

]
= g

[
U + �U (t)

2
, t|qi

]
g′

[
U + �U (t)

2
, t|qi

]
, (23)

where �U and �ηl denote the increments of related random pro-
cesses, while M means expectation value for averaging over the
before mentioned normal Wiener processes ηl(t).

4. Numerical scheme

For a numerical solution the symbolic equation (20) should be
rewritten in finite-difference form

dU j(t) = ψ j
(
U (t), t|qi

)
dt +

n∑
l=1

g jl dηl(t) ( j = 1,n), (24)

where dηl(t) is an increment of a normal Wiener random pro-
cess [26]. For the solution of last Eq. (24) we use the ‘predictor-
corrector’ scheme developed for numerical simulation of gas and
plasma dynamics by particle-in-cell method [28]:

Uk+0.5
j = U k

j + τ

2
ψ j

(
U k, tk

∣∣qi
) +

n∑
l=1

g jl
(
U k, tk

∣∣qi
)[�ηl]1/2,

U k+1
j = U k

j + τψ j
(
U k+0.5, tk+0.5

∣∣qi
)

+
n∑

l=1

g jl
(
U k+0.5, tk+0.5

∣∣qi
)
�ηl, (25)

where τ is the small time step for numerical integration of these
equations, U k

j relates to time tk = t2 + k ∗ τ , �ηl = γ̃ k
l

√|τ | and

[�ηl]1/2 = 0.5γ k
l

√|τ |, while γ̃ k
l and γ k

l are normal Gaussian ran-
dom values. This scheme is written for given qi and relates to the
symmetrized form of solution of stochastic differential equation
(Stratonovich integration).

However as was mentioned before the global solution of
Eq. (17) can be obtained as the sequence of matched local solu-
tions by recurrent application of Eq. (19). So for the global solution
we need a series of particle coordinates qk = q(tk) sampled from
of the marginal distribution functions w(U1(tk)|q(tk)) related to
times tk and random process U1 = {X1,μ1, ν1} (with initial con-
dition {X = 0,μ = 1, ν = 0} at t = t2). So the full algorithm for
numerical solution of generalized Langevin equation can be writ-
ten in the form:

Calculate qk+0.5 = 〈
q
(
tk+0.5)〉 from w

(
U1

(
tk − τ/2

)
, tk − τ/2|q(

tk))
U k+0.5

j = U k
j + τ

2
ψ j

(
U k, tk

∣∣qk+0.5) +
n∑

l=1

g jl
(
U k, tk

∣∣qk+0.5)[�ηl]0.5,

U k+1
j = U k

j + τψ j
(
U k+0.5, tk+0.5

∣∣qk+0.5)
+

n∑
l=1

g jl
(
U k+0.5, tk+0.5

∣∣qk+0.5)�ηl.

If the parabolic approximation becomes wrong sample qk+0.5+m

from

w
(
U1

(
tk+m − τ/2

)
, tk+m − τ/2|q(

tk+m))
, (26)

where m ∼ 1 � 100. Sampling is taken only if the error of the
parabolic approximation of potential along the average trajectory
is larger than a given small value. Sure the presented algorithm
is only one of the possible numerical schemes to solve system of
Langevin equation and we are working on an improvement of the
numerical accuracy of our calculations.
5. Initial conditions and average values

In presented calculations for 1D case the initial wave functions
ψ(q) were chosen in Gaussian form describing, for example, the
ground state of the harmonic oscillator

ψ0(q) = (A/π)1/4 exp

(
− A

2
(q − q0)

2 + ipp0

)
. (27)

From (Eq. (3)) the corresponding Wigner function looks like

W0(q, p) = exp
(−A(q − q0)

2)exp
(−B(p − p0)

2)(A ∗ B)1/2/π, (28)

where B = 1/A. The tomogram of Gaussian states as it follows
from Eq. (6) has the form

w0(X,μ,ν) = exp(−(X − μq0 − νp0)
2/C)√

πC
,

C =
(

μ2

A
+ ν2

B

)
. (29)

The average values of quantum operators Â defined in terms of
density matrix read〈
Â(t)

〉 = Tr
(
ρ̂(t) Â

)
(30)

where Tr ρ̂ = 1. In the Wigner–Moyal formulation of quantum me-
chanics 〈 Â〉 can be rewritten as

〈
Â(t)

〉 = ∫
AW (�q, �p)W (�q, �p, t)d�q d�p, (31)

where the Weil symbol of the operator is given by

AW (�q, �p) =
∫

A

(
�q − �ξ

2
, �q + �ξ

2
, t

)
eiα1〈�p|�ξ〉 d�ξ . (32)

The expression for the average values in the center-of-mass to-
mography formulation is obtained using the relation between w
and the Wigner function

〈
Â(t)

〉 = ∫
exp(i X)w(X, �μ, �ν, t)A( �μ, �ν)dX d �μd�ν,

A( �μ, �ν) =
∫

AW (�q, �p)exp
(−i

(〈 �μ|�q〉 + 〈�ν|�p〉)) d�q d�p
(2π)2Ñ

. (33)

If the considered operators depend only on coordinates or mo-
menta then formula Eq. (33) can be transformed to

〈
Âq(t)

〉 = ∫
Aq(X)w(X,μ1 = 1, �̃μ = 0, �ν = 0, t)dX,

〈
Â p(t)

〉 = ∫
A p(X)w(X, �μ = 0, ν1 = 1, �̃ν = 0, t)dX, (34)

where Aq(X) ≡ AW (q) (A p(X) ≡ AW (p)), �̃μ(�̃ν) designates all
μ j(ν j) except for the specified μ j = 1 (ν j = 1) at time t . As
discussed before, the calculation of average values according to
Eq. (34) can be done simultaneously for a proper choice of random
Markovian processes with proper initial conditions {Xk,μk, νk,k =
1, . . . , s}. In this Letter in 1D case we choose s = 2 and take for
coordinates (k = 1) {X1 = 0,μ1 = 1, ν1 = 0}, while for momentum
(k = 2) {X2 = 0,μ2 = 0, ν2 = 1}. This set of initial values allows
us to calculate average energy 〈E(t)〉 = 〈Ĥ(t)〉 according to the ex-
pression

〈
Ĥ(t)

〉 = ∫
K W

p (X)w(X, �μ = 0, ν1 = 1, �̃ν = 0, t)dX

+
∫

V W
q (X)w(X,μ1 = 1, �̃μ = 0, �ν = 0, t)dX, (35)

where K W
p (X) = p2/2|p=X and V W

q (X) = V (q)|q=X .
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For a pure state ρ(q,q′) = ψ(q)ψ∗(q) and the tomograms w are
connected with the density matrix ρ by relation [16–18]

w(X,μ,ν, t)

=
{

1
2π |ν| |

∫
ψ(y)exp(−i μ

2|ν| y2 − i X
ν y)dy|2, ν �= 0,

1
2π |μ| |

∫
ψ̃(p)exp(−i ν

2|μ| p2 + i X
μ p)dp|2, μ �= 0,

ψ̃(p) = 1

2π

∫
ψ(y)exp(−ipy)dy. (36)

So for the before mentioned set of initial conditions the tomo-
grams are equal to the wave functions |ψ(q)|2 or |ψ(p)|2. For both
μ = ν = 0 we get w(X,0,0) = δ(X).

6. Wigner–Moyal approach

The integral form of the Wigner–Liouville (WL) equation can be
derived by adding the classical force term to both parts of Eq. (5).
Then we can rewrite the evolution equation as
∂W

∂t
+

〈
p

m

∣∣∣∣∂W

∂�q
〉
+

〈
F (�q)

∣∣∣∣∂W

∂ �p
〉

=
∞∫

−∞
d�s W (�p − �s, �q, t)ω(�s, �q), (37)

with ω(�s, �q) = 2
(2π)Ñ

∫
d�q′ V (�q − �q′) sin(

2〈�s|�q′〉
h̄ ) + �F (�q)

dδ(�s)
d�s . Using

Hamiltonian equations let us introduce the dynamic trajectories
{q̄t(t; pτ ′ ,qτ ′ , τ ′), p̄t(t; pτ ′ ,qτ ′ , τ ′)} starting from point pτ ′ ,qτ ′ at
time τ ′ and evolving according to

dp̄/dτ = F
(
q̄(t)

)
, q̄τ ′ (τ ′; pτ ′ ,qτ ′ , τ ′) = qτ ′ ,

dq̄/dτ = p̄(t)/m, p̄τ ′ (τ ′; pτ ′ ,qτ ′ , τ ′) = pτ ′

and the Green function Π W (p,q, t; pτ ′ ,qτ ′ , τ ′) = δ(p − p̄t(t; pτ ′ ,
qτ ′ , τ ′))δ(q − q̄t(t; pτ ′ ,qτ ′ , τ ′)). Then the integral form of the
Wigner–Liouville equation (37) can be written as [29–32]:
(a) (b)

Fig. 1. (a) Average coordinate 〈q(t)〉 and momentum 〈p(t)〉 for oscillator, (b) Average energy for oscillator. Solid lines (1) tomography approach, dashed lines (2) the first
iteration in Wigner approach, dash-dotted lines (3) finite–difference solution of the Schrödinger equation. The occouring oscillation in energy is a finite-size effect which
vanishes for higher grid resolution.

Fig. 2. Square of the wave function modulus for harmonic oscillator at different times. Notations are the same as in Fig. 1.
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Fig. 3. Average coordinate 〈q(t)〉 (left) and momentum 〈p(t)〉 (right) for a wave packet tunneling through the barrier. Notations are the same as in Fig. 1.

Fig. 4. Variance of coordinate 〈q(t)〉 for a quantum particle tunneling through the barrier (left). Average energy for a wave packet tunneling through the barrier (right).
Notations are the same as in Fig. 1.
W (�p, �q, t) =
∫

Π W (�p, �q, t; �p0, �q0,0) × W0(�p0, �q0)d�p0 d�q0

+
t∫

0

dτ ′
∫ ∫

d�pτ ′ d�qτ ′ Π W (�p, �q, t; �pτ ′ , �qτ ′ , τ ′)

×
∞∫

−∞
d�s W (�pτ ′ − �s, �qτ ′ , τ ′)ω(�s, �qτ ′ ), (38)

where τ ′ ∈ [0, t]. The first term in Eq. (38) gives the classically
evolving initial distribution W 0(p̄0, q̄0) which may correspond to a
pure quantum state (for example, the ground state). Thus this term
describes not classical but rather quantum effects and may contain
arbitrary high degrees of Planck’s constant. Presenting the solution
of Eq. (38) as iteration series, we can take into account all cor-
rections to classical dynamics of the quantum distribution [29–33].
In this Letter for comparison of results in tomography and Wigner
representation of quantum dynamics we are going to use only the
first term of the iteration series, namely the first term in Eq. (38).
In this approximation we can also calculate the averaged values of
quantum operators in Wigner representation (using Eq. (31)).

7. Numerical results

In this section we are going to test the developed approach.
We compare results obtained by tomography approach (TA) with
independent finite difference solutions of the Schrödinger equation
(SE) and results obtained by using the first term of iteration series

in Wigner approach (WA) for a 1D harmonic oscillator Ĥ = p̂2

2 +
q2

2 and a quantum particle tunneling through the barrier (V 1(q) =
exp(−q)) in a very broad harmonic trap V 2(q) = 0.01 q2

2 . The broad
harmonic trap V 2(q) is introduced to prevent a fast decay of the
wave packet after the barrier in infinite space.

Results for harmonic oscillator are presented by Figs. 1 and 2.
Fig. 1(a) presents average trajectories 〈q(t)〉 and 〈p(t)〉 (Eq. (34)).
All average trajectories practically coincide with each other.
Fig. 1(b) shows average energies. Here average energies in TA and
SE practically coincide, while the average energy from WA deviates
by 4% from exact values (SE).

Fig. 2 presents |ψ(q, t)|2 (Eq. (36)) from TA, WA and SE. Agree-
ment between TA and SE wave packets is good, but WA results
deviate from exact wave functions.

As it follows from previous consideration the developed ap-
proach is exact for harmonic potential and that is the reason of
excellent agreement of the presented TA and SE results.

Now let us consider analogous results for particle tunneling
through a barrier. Fig. 3 presents average 〈q(t)〉 and 〈p(t)〉 tra-
jectories. Here the tunneling time (time of crossing barrier) is of
order 1. Now agreement between TA, WA and SE is worse. The
physical reason for this disagreement is that for large times t the
tomograms are widely spread and very flat if the particle can move
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to infinity after interaction with the barrier. So the main contribu-
tions to 〈q(t)〉 and 〈p(t)〉 come from large values of coordinate and
momentum (q ∗ w( �U1(t)), p ∗ w( �U2(t))). Now average trajectories
are small in comparison with positive and negative contributions
(from q > 0 (p > 0) and q < 0 (p < 0)). To improve the accuracy of
our calculations we should develop a more sophisticated numer-
ical scheme for the solution of the system of stochastic Langevin
equations. This is our task for future activity.

Results for the squares of probable deviations from the average
〈q(t)〉 trajectories in TA, WA and SE are presented by Fig. 4. Now
as in the previous case we have moderate disagreement between
TA, WA and SE approach. Physical reasons of this difference is the
same and have been discussed before.

Results for average energy in TA, WA and SE are shown in
Fig. 4. Deviations of TA and WA from the exact values is of or-
der 15%.

8. Conclusion

In the framework of the center-of mass tomography represen-
tation of quantum mechanics the tomograms defined by the time
evolution equations are positive and are associated with proba-
bility distributions of random variables. In this Letter we present
an approach which describes the dynamics of quantum particles
by the Kolmogorov equations for the Green functions. To solve
Kolmogorov equations we use diffusive Markovian random pro-
cesses described by the nonlinear stochastic Langevin equations
related to Kolmogorov equations. As a result, the quantum dy-
namics can be described by Markovian random processes, which
can be generated by the proposed numerical scheme combining
finite-difference time steps and random sampling. The developed
approach is exact for harmonic potentials and that is the reason
of the excellent agreement of the presented results with an in-
dependent finite-difference solution of the Schrödinger equation.
Preliminary results for particles tunneling through a barrier show
that the numerical scheme used in this Letter for the solution
of the stochastic equations has moderate accuracy and should be
modified to reduce systematical errors in calculations for long cal-
culation times.
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