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Abstract

We investigate a one random variable tomography magcrid®ng quantum ste of a multipartite system. The random
variable is analogous to center of mass considered in rotated and scaled reference frames in the phase space. Starting from th
star product formalism, we construct the map, investigate its properties (including the symmetry properties in respect to identical
particles permutations), derive the éwion equation, and consider a multimodeitiator as an example. The physical meaning
of the map is analyzed in detail.
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1. Introduction

During last decade there was a growing interest to new representation of quantum mechanics, a probability
representatioril,2]. In the framework of this representation a quantum state is described mothaegative
probability distribution function, called marginal distributif8)4], or tomogram (see al§6—7]for reference about
the analogous quasidistribution functions: non-negative Hu@irfiinction and Sudarshan—Glaub®ifunction).

Tomographic map, first developed for continuous variables, was then generalized for discrete spin variables
[8-14] It appears that the tomogram is a measurable quantity, that can be used in experiments on non-classical
and coherent states of light or matter optjt§—26} On the other hand, the non-negativity of state-describing

* Corresponding author.
E-mail addressesantoncom@id.rgA.S. Arkhipov),lozovik@isan.troitsk.ri(Yu.E. Lozovik), manko@sci.lebedev.i{y.l. Man’ko).

0375-9601/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2004.06.039


http://www.elsevier.com/locate/pla
mailto:{antoncom@id.ru}
mailto:lozovik@isan.troitsk.ru
mailto:manko@sci.lebedev.ru

420 A.S. Arkhipov et al. / Physics Letters A 328 (2004) 419-431

function in tomographic representation attracts those who deal with the simulation of quantum $23ieifisis

is due to the fact that many problems in the field ariseduse the values used to describe the state are can be
negative, or even complex (for example, sign problem in Fermi-systems simulations). Tomography is also applica-
ble in quantum computations and entanglement (see [28]), as well as in the theory of information and signal
analysig20].

The state of the system with degrees of freedom can be described by density matgx, ¢”) [29,30], the
function of 2V variables. Usual symplectic tomography schef@&-33]introduces the non-negative function
of 3N variables, symplectic tomogram; (X, /i, V), to describe the state. Homogeneity of this func{ia#,35]
is the reason that effectively it has onlwandependent variables. In connection with the growing interest to the
tomography in experiments and simulations, it would be desirable to find more simple tomographic map with less
number of variables. This is the aim of present Letter. We analyze in details the ‘center-of-mass’ tomography,
described in Ref[36], which operates with one random variatXe Advantage of this scheme is that the state
describing functiomw (X, (i, v), depends on only® + 1 variables.

In Section2 we present the definition of tomographic scleewith one random variable, elucidate some of its
useful properties and discuss the physical meaning of the map. In S8atierderive the equations describing
guantum evolution, stationary states, quantum transitions and rules for average values calculation for the proposed
tomography map. Some examples of state descripiging the developed approach are given in Sectiand
symmetry of the map with respect to particles permutations is discussed in S&cfiba work is summarized in
Section6.

2. Onerandom variabletomography
2.1. Definition of the tomographic map

We begin with the one-dimensional (1D) case of a particle with continuous degree of freedom (in this Letter we
do not consider spin variables, but generalization of th&ism is straightforward). Quantum mechanics states
that we know ‘everything’ about the system if we know density matrix. In practice, to obtain any information about
the system we have to measure some quantities, for example, coorglinatmomentump. It is also possible
sometimes to measure an intermediate quantigys- vp, wherep, v are real parameters. Formally, this quantity
(denote itX) is coordinate, measured in scaled and rotated reference frame in the phase Hgaces out, that
the distribution function ofX (w(X, u, v)), measured for all sets gf, v givescomplete quantum mechanical
descriptionof the system, in the sense that there is a unique correspondence bet@égn, v) and density
matrix (see, e.g[1,31,33,37,38] Note that distribution functiom (X, 1, v) is equal to(§ (X — ug — vp)), where
(---) is quantum mechanical average. Then there is, in principle, a possibility of complete experimental density
matrix determination through the set of coordinate measurements.

When we deal with more than one particle and dimension we can consider indiigual.;g; + v;p;
for every jth degree of freedom. This results in the symplectic tomography represerf&2i87]. Here we are
to show that it is enough to work with only one = Zj X ;. To do this, let us consider the generalization of
w(X, u,v) =(8(X — ug —vp)), whereg, p andu, v becomes the vectors, their products become scalar products
of vectors, whileX remains a real number:

w(X, i, V) = (§(X — fig — V). @)
Related problems were discussedat,22]
Throughoutthe Letter designations are the following. We consider the syst¥€manticles ind dimensions, the
number of degrees of freedomn&l. Vectors are written ag, we use everywhere the vectors witld components,
if the otherwise is not mentioned. Designatiéis used for the vector with all components equal taee 1 1).
Scalar product of vectors is designatee- be (meaninga = Zj bjcj), a = b o ¢ denotes the component-wise
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product of vectorsd; = b;c;). The tomogram for usual symplectic scheme is designatedsafé, i, V) (f(, m
andv with Nd components each); the tomogram with one random variable is writter{ ¥si, v). We also use
Planck constari = 1 everywhere.

We can begin the construction of one-random-variainedgraphy representation from the known star product
expressions. In the framework of star product formalj88+-42]every operator is replaced by the function (‘sym-
bol’), depending on specific set of parametery products of operators turn into ‘star products’ of corresponding
symbols (general star product problem was discussed also ifdR8gaind symplectic tomography was considered
from the point of view of star product in R€33]). As a result, one deals with functions only, avoiding operators.
For example, using a pair of operatddsy), U(y), we construct the connection between the symifals’) and
operatorsa:

fa) =Tr(AU (). @)

A= / fAD(y)dy, @)

[THBmie)dy=1 (4)
Fory ={X, i1, v} one can choose

0(y)=8(X — i —9p), (5)

D(y) = 2m) N exli (X — fig — vp)]. (6)

which defines the symbols (denote them(X, 1z, v)) and star product:

(wa *xwp)(y) = f wa(YHYws (K", Y, y)dy" dy". @)
The kernel of star produdt (y”, y’, y) is expressed as follows:
KG". ¥, »=Tr[DG"DOHU ()]
- /e*"<’<"*x’*x”)5(ﬁ” + i —k)s@ + 7V — kv)

« e*i(/I”Tl,fk(ﬂ”ld),ﬁ'ﬁ/U)+(ﬂ/§,+ﬁ/,a/,+k2ﬂg)/2) dk
(zn)Nd+l'

®)

For any operato,ﬁ we haveg(A) = Tr(,éA), thereforew,-symbol of density operatgris the same as (X, i, V)
defined by Eq(1). Density matrix in any representation is just a matrix element of density operator. Then, finally,
we come to the unique correspondence (invertable map) between the tomograddensity matrix mentioned
above:

p= [k, me D dX djidy

T (10)

Density matrix always can be reconstructed from the tomogramsing these equations, so one random variable
tomogram describes quantum statampletely Note that now the state-describing functiomisnnegativeand
depends on ®d + 1 variables in contrast to symplectic tomogram, depending/o @ariables.
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2.2. Properties ofv(X, i, V)
Itis convenient to consider density matrix in coordinate representation and Wigner description of quantum states

[44] to derive the properties and evolution equation for the tomogrartm the framework of Wigner formalism
the state of the system is described by real Wigner fundli@g, p) defined in phase space and connected with

the density matrix as follows:
W(G 13)=/ G+l g L)pmimn 2 (11)
’ 2’72 (2m)Nd’
> ~y
0.3 = [ w(T5T s w2
Using Eqgs(9), (10)and Eqs(11), (12) we obtain:
: -~ - dkdgdp
w10 = [ WG ek AL, (13)
(2m)
dX dpdv
e (14)

=2y — —i(ig+vp—X) Y
Wiq P)—fe raevP=Sw (X, i, V)W-
Usual symplectic tomography map is developed in refereficd8,37] The symplectic tomograma, (X, 1, v)

and Wigner function are connected as follows:
G e~ od—To dkdqdp

ws(X M,V)—fW( ik(X~fioG~y p)W’ (15)
I, dX djidy

T (16)

W p)= / SRR Xy (X, 1, ) S )2V
Since the Wigner function is connected by invertable maps with both tomograamsl w; it is obvious that

they contain the same information about the quantum state. In fact one has

Nd
w(X, ii, a)szs(?,ﬁ,a)(s(x—zz,) dy, (17)
j=1
we (X ,1,G)=fw(Y,iéo,z,iéoﬁ)e5<Y—’3’?>dde. (18)
The Wigner function is normalized:
/W(_) 5 did / _,+lz . ou ipududqdp / _,+ﬁ . ou 5y dii da
= _, - - e - _7 A u u
q,p)dqdp Pla+34-5 2n )N Pla+54-5 q
(19)

- [ ra.drdi=1
where we choose the normalization for density matrig e 1. Then the tomogram is normalized inX vari-

able:

/ w(X, i, V) dX = / W (G, p)s(k)e*HatvD) g dgdp = 1. (20)
Although the tomogram depends oV@ + 1 variables, instead off2d for density matrix, the completeness

of physical description is the same for both formulations, due to the fact that the tomogram is a homogeneous
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function. Consider the definitiofi3) and multiply all variables inv by a real numbek.:

w(xx,xﬁ,xﬁ)=/W(c?,ﬁ)e*i*"“*ﬂ?*“mdkdqd’? /W(q pre-ikor-iig-ip 2 dadp

(2m) (27 |2])
~ w(X, @, v) (21)
Al
where we just made the change of variabiles— k.
From property(21) we have
w(X, i, 0) = X" w@, i/ X, 9/ X). (22)
A pure state is described by the wave functibty). In this casew is given by
X-y¥hy, Poaei v\l
wix o) = [ ¥ X2 ) |[va@ exi(i5 - 132 %) |oa @3)
(Zn)Ndl—[ _l|v] v v

Corresponding formula for the symplectic tomogramwas given in Ref[45].
2.3. Physical meaning

We have defined the non-negative functioX, i, v) (9) completely describing quantum state. For any set of
{11, v} it is normalized as a function of, thereforew(X, i1, v) is the set of distribution functions of quantix).
Then to know the quantum state completely one has to consider all sgtsigf (in practice, moving with some
step) and measuré = g + v p many times for each set: this yid the distribution functiom (X, 1, v) for given
set of{x, v}.
Looking at Eq.(22) we see that we even do not have to knewX, i, v), the value of this function in some
point in X for all {1, v} is enough. This does not change the schefmaeasurements, we still need to measure
full distribution function of X for given {it, v} (it is necessary to compare the values of distribution function in
different points to be sure that statistical precision is good), but one has to store the smaller arrays of information.
Property(21) can be used in another way. Afis equal tofi + vv, we can parameterizgi, v} by A and
2Nd — 1 angles (to use the spherical coordinates in the spage,af}). Applying Eq.(21) we come to reduced
tomogram with 2vd variables and i, v} located on the sphere with radius equal unity2Nd)-dimensional
space. This new tomogram also completely describes the state and in some cases it can be convenient to use thi
one in measurements, because it is easier to samjale-21 angles thari2N d)-dimensional space fromoo to co
(see, e.g.[20,22)). On the other hand, such formulation causes trouble with the derivation of evolution equations
and arbitrary average values calculation.
The only remaining unclear point is the meaningsof= jig + v p. It is the sum of positions measured in scaled
and rotated reference frame in the phase space. Butddes it mean physically? It is impossible to measjre
and p simultaneously, but sometimes one can transfgramd p into the formjuig + v p, for example, mixing the
signal beam with local oscillator field (in quantum optics, EE¥ and references therein). Another scheme was
proposed if20], whereg and p are mixed due to wave (electromagnetic or matter) propagation through a lens (or
an analog of a lens in atomic optics). Taking into accouaptfesent development of saice concerning controlling
the Bose-condensates of atoms, this also can be a possible realm of tomography measurements. Bose-condensa
is a coherent macroscopic state of many atoms anddéseribed by macroscopic wave function. For example,
one can mix two such waves (condensates of the same atoms), using the first as a signal wave and the second a
local oscillator. Varying the phase differemof the condensates we sample differgni. Probably, the same can
be done in superconductors (where the electrons of sapéuctivity also form the coherent macroscopic matter
wave), using Josephson junctions.



424 A.S. Arkhipov et al. / Physics Letters A 328 (2004) 419-431

If we somehow accomplished the scaling and rotatioeference frame in the phase space we can measure the
set of positions in this reference frafe = 1.9 + v; p;, butitis enough to measure their sukh= jig + v p. It
is analogous to the position of center of mass measurertiensim of coordinates oberesponding vector, to be
more precise). Indeed, the center of mass position is

Xem= Y m;X;/M= mjGu;q;+vip)/M, (24)
J J
whereM = Z m; andm is the mass corresponding jth degree of freedom, ankicm can be associated with
X=jqg+vp for some other set offz, v}. We sample all sets dfi, v}, therefore, it is enough to measure the
center-of-mass position in each scaled and rotated reference frame.

Finally, we would like to make the following remark. The storage of arrays representing full density matrix or
tomogram becomes impossible when the number of degrees of freedom growth. If we use some grid, the number
of arrays elements is proportional @d?, wheren is the number of grid steps. IncreasiNg/ we soon come to
the situation when all data carriers in the world cannottestorresponding arrays. And this is not necessary as the
state of the system is uniquely determined by the one-particle density (through the density functiqaél, zee
references therein). Then for many-particles systerssri#ion we can use reduced density matrices (one-body,
two-body, etc.), and tomography map is constructed for them in the same way as for full density matrix. Then the
situation with reference frame dioey and rotation is isnplified becausg. andv are the same for all particles (if
one-body density matrix is considered) and disttion functions are averaged over all particles.

3. Statetransformations
3.1. Evolution equations

Let us discuss the evolution equation for tomogramBegin with the most general evolution equation for
density matrix:
. 8p(§/7 q”) 'y >/ o>
= [H.0G".q")] (25)
Here and throughout the Letter we omit the dependence onrtirbet imply that all functions, describing the

state (density matrix, Wigner function, tomogram) depend on time as parameter. For Hamiltonians in the form
=), ﬁz/(Zm /) + V(q) we can utilize the Moyal evolution equation for Wigner funct[did, 48}

aW  paow d I A

— 1% ——|=-V|lg—=— ) |W=0, 26
o1 +maq+’[ (“28 ) (q zaﬁ)] (26)

wherep/m means the vector with componemts m; (the equation holds for the case of different masses for differ-

ent particles and directions), the operators in the potevit@ddsignates the analytical expansion of the potential and

use of the products of corresponding operators. Thisaéon can be easily obtained applying the transf(iit)

to Eq.(25).

Let us apply the transforif13)to evolution equatioif26). Expanding the potential in E¢26), we come to the
transforms of the following quantitiegw, dW/dq, pW anddW /3 p. The transforn{(13)of g W is

I dkdgdp
/qW(q,p)eXp[—zk(X fig —vp)] (Zq)p

d [ W(.p) dkdqdp
- ﬁfTexr{—zk(X g — )] 20 27)
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Using an operatofd/d X)~1, giving the antiderivative of the function it works on, we have

i . 1 -1
;€ ikx _E(AN T ax _ (9 omikX (28)
k k\0X X X

and Eq.(27)becomes

dkdgdp 9 (@
@r) — au\aXx
Analogously one can obtain the rules of transformation of the terms i(2Bj.designated as—>":

-1
f qW(G. p)exp[—ik(X — jig —Vp)] ) w(X, L, V). (29)

3 0\ *
W@, _° X i D). 30
W~ -5z (55) v (30)
aW(g,p) . 0
Z —w(X, i, 31
27 — U BXw( i, V), (31)
pW(q, p) (2" (X, 11, v) (32)
- ——|—= w v
PP v\ X e
aW(q, p ) .
M—)v—w(X, W, V). (33)
ap X

Application of Eqs(30)—(33)to the Eq.(26) gives the evolution equation for one random variable quantum tomo-
gramuw:

9 ) 3/ aN\N L Q.9 3/ aN\N L Q.9
UL Y B R R IR DY (L (R T | WS (@)
at  m ov I\ oX 2 90X I\ oX 2 90X

3.2. Stationary stateand quantum transitions

Stationary states with definite energy obey the following eigenvalue equation:
Hpg = peH = Epg. (35)

From Eq.(11) we have the rules of transition from the equation for density matrix to equation for Wigner
function:

azp(* q) (107 9
— S - w 36
5 _)<48q2 595 ) @, p). (36)
Using (30)—(33) we have the eigenvalue equation for the tomogramith one random variable:
% 1 2/0\2 1 , 2 rev(iz? (0 -1 .
— | == — U5 w —v— -—=\| == w=Ew,
,-—1 2m; 92 \0X 8m; i ax? 2"9X " 9 \ox

i.o o (a\*t
- —mv(iL - (2 . 37
sz v, (zvax au<ax) )w (37)

Consider now two stateg, andb. The probability of transition from state to stateb is P, = Tr(040p) =
S palq’ g pp(G",q")dg'dg", or, in terms of the Wigner formalism,

2o .o 0 -
p2+zp£>W(q, P V(@r§.q") — V(Q +5

Pap = (2)M / WeG, WG, P didp. (38)
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From Eq.(14) one gets the expression 8y, in tomography approach:

XdYdjidy

L. . d
Pab:fwa(X, M»v)wb(yv -, — ) D (27.[)Nd (39)

3.3. Tomographic map in temperature-dependent processes

Tomography map can be as well applied to theaystin thermodynamic equilibrium, with temperat@rez O.
Tomographic evolution equation in ‘imaginary timg= 1/ T (measurind’ in units of energy) is derived from the
following equation:

3,0(*’ q", B) =
T = H , 40
2B p(q.q",p) (40)
with initial condition p(g’. ¢”, p = 0) = 8(¢" — ¢") (corresponding to constant Wigner function, see @4,)).

Here indexg’ in Hw shows that the Hamiltonian acts only on varialjés
Transition to the tomogramw is straightforward. We just use the same rules, as in the derivation of evolution
equation(34) and eigenvalue equati@¢B7). Then the evolution equation in imaginary tirddor w is given by

Nd 2 -2 2 . -1
ow 19 0 1 5,90 iv 9 0 (0
o ) - 2 wrrev(2 L - 2 (2 ,
op Z|:2m 912 (ax) 8;71,-“-18)(2}'”r (2 0X aﬁ(ax) )w

d .0 9 [a\*
—Z L8 imyv (L= — #(—) w. (41)
2m] ov; 2 0X 0u\oX
From Eq.(13) we see, that initial conditiong(= 0) is w in the delta-function form, equal zero everywhere,
besides the point, v = 0 and constant itX direction in that point.

3.4. Average values calculation

Developing the ‘center-of-mass’ tomography formalism we must provide the rules of average values calculation
to complete the picture. Using the density matrix to describe the state of the system we can obtain the average value
of some operatoA as

(A) =Tr(pA), (42)

where we choose Tp) =
In the framework of Wigner—Moyal formulation of quantum mechanics one deals with\iind symbol

AY(q, p) [49] of operatorA(@, fa) (see[50,51]for review, see als{h2]), to calculate the average value:
(A) = f AY@G, WG, p)d dp, (43)
where the Weyl symbol is given by
N 5 B GEO4ITD\ —ifqg—iT dgdﬁ
w _ §4+ §
A (q’p) — /Tr(A(q,p)el q l'lp)e sg—inp (ZN)ZNd

Expression for the average values in one random vigri@mography formulation is obtained using the con-
nection betweemw and Wigner functior{14):

(44)

(A) :fe"xw(x, i, V)AL, V) dX djidv, (45)
. o s dgdp
AL, v):/AW(q,p)e ““‘ﬁ“l’)#. (46)



A.S. Arkhipov et al. / Physics Letters A 328 (2004) 419-431 427

If considered operator depends on coordin@te:r momentaﬁ only, Weyl symbols have the same form as
corresponding operators in coordinateneomentum representation. Operam(rcA}) is A(X) in x-coordinate rep-
resentation, then its Weyl symbal” (7, p) is equal toA(g). The same is valid for momenta-dependent operator:
B(p) is B(¥) in y-momentum representation, aBd (7, p) = B(p).

Consider an operatoﬁ(c?), depending on coordinates only. For mema-dependent operators all equations
are the same, provided is replaced by, and vice versa, because the pairg: and p, v enter the equations
connecting the tomogram with Wigner function symmetrically. Integration oveiin Eq. (45) for operatorA(E})
gives the delta-functiofi(v). Then we have:

o —i(hg— . dXdpndg

(A):fAW(q)e iiq X)w(XvPLvVZO)(ZT;tqu~

It is often necessary to operate with the one-particle and one-dimension operators. Then, quite generally, we can
consider an operatot(g1). Corresponding average value is given by

(47)

(A) =fAW(X)w(X,M1=1,,i=o, 0)dX, (48)

whereﬁ designates all.; except the specified;.

4. Examples

In this section we introduce several examples of tomographic map for many-particles quantum states. For
simplicity, here we do not regard symmetry over particles exchange. Permutations properties are considered in
Sectionb.

4.1. Gaussian states

In various applications we often deal with the pure states and wave functions of Gaussian form. Examples are
the ground state, as well as coherent or squeezed statesofstem of non-interacting oscillators, or some many-
dimensional Gaussian wave packet. Such wave packet can be created due to parametric excitation of multimode
vacuum state of electromagnetic fi¢h8], e.g., in the framework of nonstationary Casimir effget].

For the wave functiow (§) = [}, ¥/; (¢;), where

Vi) = (A ) Y4emF amx) i, (49)
we have (using Eq11))the Wigner function as a product &f; (¢, p;), where
W;(q. p)=e @)% e=Bitr—y)?* (A B\ Y2/m, (50)

and for state¢49) B; = 1/A;. Here we used the fact that the Fourier transform of a Gaussian is Gaussian. The
same rule works when we apply the transformatiod) to Eq. (50). Then, the tomogram of Gaussian states has
the form

- — aay 2
e~ (X—iix—vy)</C

2
Gausyx 7 7)) = : C = (_ V_> 51
w X, i, v) NCTe Z + (51)

Thermal density matrix of independent oscnlators moabaussian, but it is not a product of wave functions, as
the state is not pure. Still it is a product of density matrices of individual oscillators (sed58ly.,

2A(B; — 1 , )
pilg.q") = \/@ o AilBj(a*+q'®)~2qq 1 (52)
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whereA; =mw;/(2shw;p)) and B = ch(w;B). Omitting the straightforward calculations, we obtain the tomo-
gramuw in the following form:

—-X2/D Nd 2

M.
B(X. i) = D=S(—"1 1224, +1)). 53
v = /Zl(ZAj(Bj_l)—i_ VA B (53)

4.2. Fock states

The Fock states of light (the eigenstates in repregen of photons number) correspond to ground or excited
states of multimode oscillator. The state is labeled by vectfrinteger numbers and wave function has the form:

—q2/2
Nd ¢~9i/%H, (q;)

v (qg) = _
@) 1_[1 7T1/4,/2njl’lj!

j=

(54)

where H,, is the Hermit polynomial ofnth order. To obtain the tomogram for such state we use the following
facts. First, coherent state of an oscillator is disa by the Gaussian wave function and, correspondingly, by
the Gaussian tomogram (see Ef1)). Coherent state is labeled by complex vector a + ib and parameters

of Gaussian wave function in coordinate representad@®arex; = +/2a; andy; = —+/2b;. Second, the wave
function of coherent state (for simplicity, one dimensiswconsidered here) is expanded in the basis of Fock states
as

20 '
o) =e "2 " ——|n), 55
2 9
n=
which is connected with the expression for generating function of Hermit polynomials:
2 >
o ¥ t20g _ Z —H,(q). (56)
= n!

Expanding the tomogram of coherent state in Hermiypoinials and wave function of coherent state in corre-
sponding integral expression in wave functions of Fock states we have

. Nd Nd HZ (X;/./ 12 +v?)exp{—X3/(u? +v3)}
w'(X, i, a)=/5<x—2xj> I1 " L T T ax. (57)
j=1 j=1 2%in;! /Tt’(,bL? + v]z)

For example, forN = 2,d = 1 and states withug, n2 equal to O or 1 (denotedu1, np)) the tomograms
w(X, n1, u2, v1, v2) have the forms

exp—Xx?%/C
(00 _ EXA=X/C]

Nl (58)
01 | C2 2C2X2+C1Co+ CHeX/C 59)
R Tiro) c52 ’
2,2,-X2 2 2
L _ ACiChe XC (x4 ) X2C3+C3-401C; | 3 (60)
/7 C3/2 cz C C1C2 4)’

whereC1 = p2 +v2, Co = 3+ v3 andC = C1 + Ca.



A.S. Arkhipov et al. / Physics Letters A 328 (2004) 419-431 429

5. Symmetry propertieswith respect to particles permutations

Consideration of identical particles exchange imposes the restrictions concerning the possible form of the state-
describing functions. In this section we discuss theesponding properties of one-random-variable tomographic
map (seg56] for permutation symmetry properties of the symplectic tomogram).

Further we use the following notations. A vector without indekas Nd components, vector with index;
denotes the set of some values, correspondingttgarticle, and consists af components. A vectai denotes
the collection of all components af except those that are specified in the same expression. For exgmptage
expressiony (g, q) is the vector of all the coordinates, except the coordinates oftthparticle.

For particles obeying Fermi or Bose statistics, we have the following symmetry properties concerning their
permutations:

PG G q 3.3 =pGh 3 q )3 = 0@ 35 q a3 7). (61)
where the upper sign’) is for Bose systems, and lower sign) is for Fermi systems. Note that ‘entire’
particles permutation (two particles exchange hptindg’ variables) corresponds g&gn conservation for both
Fermi and Bose statistics

pG;.4.4:4}.3.4") =rG.3;.4:3.3].7"). (62)

In the expressions for obtaining the Wigner function form density métrly and tomogramw from Wigner
function(13) we can exchange the integration variabies < ii;, etc.), then we immediately have:

W(q;j.qi.q; Pj pi. ) =W(qi.4;j.q; Di» Dj P). (63)
w(X; L, iy 113 D5, Vi, 0) = w(X; g, [, 13 Vi, Vj, V). (64)

We see that there is no distinction between Fermi anseBsiatistics when the particles exchange ‘entirely’,
i.e. ¢ andg’ in the density matrixg and p in Wigner function ory, v in w are permutedimultaneouslyThe
distinction appears when not all the variables, corresponding to the considered particles, are permuted. When we
use the density matrix, Fermi and Bose statistics differ only in the-sijrwhich appears after the permutation of
eitherg!, Z]} org!, 5}’. For the Wigner function and tomogram this difference is expressed in far more complicated
manner, through the integral transforms (see cpoading formulae for the symplectic tomographys6]).

First, regard the permutation @f, g; or p;, p; for the Wigner function. Again exchanging the integration
variables in(11) we come to

W(G;j.Gi.q: pi»Pj» P) = W(Gi.q;,q: Pj» Pi> P)- (65)
The same considerations lead us to the similar expressian:for

w(Xs [y, fi, 3 Vi, Vj,v) = w(X; fi, Aj, [ Vj, Vi, V). (66)

Then itis enough to develop the formulae for coordinate (Wigner functiofi)(@mogram) permutations only.
Corresponding integral expressions has the following form:

W(leﬁiﬁ;l;i,ﬁj,ﬁ)=/Kw(fi,fjiiijﬁiﬁj,ﬁi,ﬁj)W(fi,fjﬁ; Yi.yj, p)dXidxjdy;dy;, (67)
WX, i}, flis iy Vs Dj, D)

=/K(X,ﬁi,ﬁj,17i,17j; Y,gi,gj,ﬁi,ﬁj)w(ngi,gjvﬁmﬁi,ﬁjv‘:])degi dgjdﬁi dnj, (68)
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and kernels are given by

W - - - - - - - -
K" (Xi,Xj,%i,Yj,4i.49}, Pi>Dj)

4 d R o N o N N N N (2N R N(Ri—T
— i(Z) 8(X; +X—gi — l]j)(s(Yi +3;— pi — pj)e’[(q’ q;)(Vi—yj)+Xi—x;)(pi P_/)], (69)
|2d
K(X, Ml»M/,UuV/,YEl»é:/,r]ur)/ /(2 )d+18($l+§-/ ,bL, /Lj)8(7'],+7’}/—1),—\}/)
% o~ KX=Y) k2 /A (ii—i ) Gii =i )+ E—=EN G =D gy (70)

6. Conclusion

The tomographic scheme for which the quantum state of multipartite system is associated with a probability dis-
tribution function ofone random variablevas analyzed in details. Specific set of parametieamdv determines
certain scaling and rotation of the reference frame in the phase space, while the position of the system center of
mass, measured in this reference frame, corresponds to the random varidliie center of mass tomogram is
shown to contain the same information about the state as the symplectic tomogram, Wigner function or density ma-
trix in the coordinate or momentum representations do. The expressions connecting the center of mass tomogram to
these state-describing functions are given in explicit form. The construction of the symplectic tomography relation
to quantum probability measure thed®} can be easily extended to the center of mass tomography approach too.

Quantum evolution equations and energy level equations for the introduced center-of-mass tomogram were
developed. Example of multimode oscillator, symmetry properties of the tomogram for identical particles (fermions
and bosons) and physical meaning of the map were discussed in detail.

The suggested center of mass tomography scheme can be used as an additional tool for reconstructing the
density matrix of states of multipartite systems, alternatively to known tomographic schemes, such as optical and
symplectic ones.
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