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Abstract

We propose a new method to simulate the quantum dynamics, based on the tomography representation. In its fram
quantum state is described by real nonnegative distribution function. We demonstrate the method applying it to the wa
tunneling of one and two interacting particles.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation of quantum systems is popular now
days and achieved considerable development rece
(see, e.g., reviews [1–3]). However, simulation me
ods usually deal with the alternating-sign functio
(wave function, the Wigner function, etc.) describi
a quantum state. Probably, corresponding difficul
with convergence of integrals (sign problem) could
resolved if one uses real nonnegative function to
scribe the state.

In this Letter we propose a new method for co
puter simulation of nonstationary quantum proces
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that uses nonnegative state-describing function,
quantum tomogram. One can define a nonnega
function, completely describing the quantum state
the phase space [1,4–6]. Quantum tomogram [7–
is defined in the space ofscaled and rotated refer-
ence frames, that is not so intuitively clear as the pha
space. But the advantage of quantum tomogram is
this function is aprobability distribution, completely
describing the quantum state [13,14].

The quantum tomogramw(X,µ,ν) depends on
the parameters of scaling and rotation of refere
frames in the phase space:X = µq + νp, where
q , p are coordinates and momenta of the syst
Functionw(X,µ,ν) is nonnegative and normalize
in X direction, therefore it can be interpreted
a distribution function of valueX. Our method use
w(X,µ,ν) as a distribution function of the trajectorie
in space{X,µ,ν}, trajectories being governed b
.
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the dynamical equations obtained from the evolut
equation for the quantum tomogram. Introduct
of the trajectories possesses additional advant
contrary to grid methods of Schrödinger equat
solution, trajectory methods, such as the method
Wigner trajectories [1,15–17], do not require t
storing of large arrays representing the wave funct
Description of the method is presented in Section 2

We apply the method to the tunneling of a wa
packet through the potential barrier, first to the sing
particle tunneling (Section 3), and then to the coll
tive tunneling of two attracting particles (Section 4
The latter case is represented by the exciton—com
site particle consisting of electron and hole—tunnel
in a nanostructure. Tunneling times, evolution of
wave packet in coordinate and momentum spa
probability of exciton ionization due to electron a
hole scattering on the barrier were analyzed in deta

2. The method

The quantum tomogramw(X,µ,ν) is connected
with the density matrixρ(q, q ′) as [18,19]

(1)

ρ(q, q ′)=
∫

w(X,µ,q − q ′)ei(X−µ(q+q ′)/2) dµdX

2π
,

w(X,µ,ν) =
∫

e−i(k(X−µq−νp)+pu)

(2)× ρ

(
q + u

2
, q − u

2

)
dpdk dq du

2π2
.

For the systems described by Hamiltonian

(3)H = p2

2m
+ V (q),

the integral transform (2), applied to the tim
dependent evolution equation for the density mat
gives [7]

ẇ − µ

m

∂w

∂ν
− 2

∂V (q̃)

∂q

(
ν

2

∂

∂X

)
w

+ 2
∞∑
n=1

(−1)n+1

(2n+ 1)!
∂2n+1V (q̃)

∂q2n+1

(4)×
(
ν

2

∂

∂X

)2n+1

w = 0,
:

where we usēh = 1, consider a particle of massm in
one dimension (for simplicity), and̃q is given by

(5)q̃ = −
(

∂

∂X

)−1
∂

∂µ
.

Let us rewrite Eq. (4) as

∂w

∂t
+ ∂w

∂X
GX(X,µ,ν)+ ∂w

∂µ
Gµ(X,µ,ν)

(6)+ ∂w

∂ν
Gν(X,µ,ν)= 0,

where functionsG depend on quantum tomogram
Eq. (6) has the form of continuity equation for t
quantum tomogram:

(7)
dw

dt
= ∂w

∂t
+ ∂w

∂X
Ẋ + ∂w

∂µ
µ̇+ ∂w

∂ν
ν̇ = 0,

that is analogous to the continuity equation for cl
sical distribution function and Liouville equation. A
known, the characteristics of Liouville equation a
the classical trajectories in phase space and they
Hamilton equations of motion. Analogously, fro
Eqs. (6) and (7) we derive the motion equations
space{X,µ,ν}:
Ẋ =GX(X,µ,ν), µ̇=Gµ(X,µ,ν),

(8)ν̇ =Gν(X,µ,ν).

Generalization for the case of more variables
straightforward, the form of equations does n
change. FunctionsG for the problem under investiga
tion are given in Section 3.

As functionsG depend on the tomogram, and w
avoid its direct calculation, it is necessary to use lo
approximation for the quantum tomogram:

w(X,µ,ν)

(9)=w0e
−[(y−ya(t))Aa(t)(y−ya(t))+ba(t)(y−ya(t))],

where y = {X,µ,ν}, and ya is the point under
consideration. Parameters of this approximation
matrix Aa and vectorba . Calculating the averag
y − ya and their average product, we obtainAa and
ba . After that, functionsG are known and dynamica
equations (8) can be solved numerically.

The local approximation (9) is used only for the c
culation of r.h.s. in the equations of motion (8). U
like the classical statistical mechanics, the trajecto
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in space{X,µ,ν} are not independent and appro
mation (9) takes the nonlocal character of quant
evolution into account. This approximation is va
for smooth quantum tomogram and dense ensem
of trajectories (if there are few trajectories in the
gion around the given point, then the approximat
(9) will not reconstruct the quantum tomogram, d
to lack of statistics). Approximation (9) also work
not well for unbounded motion, because the traj
tories scatter with time. Comparison with the ex
numerical solution in considered cases shows that
proximation (9) holds for these problems (see S
tions 3, 4).

Finally, consider the calculation of average valu
For an arbitrary operatorA(q̂, p̂) corresponding aver
age〈A〉 is calculated as [20]

(10)〈A〉 =
∫

A(µ,ν)eiXw(X,µ,ν) dX dµdν,

where A(µ,ν) is the Fourier component of Wey
symbolAW(q,p) of operatorA(q̂, p̂) (see, e.g., [1
21]).

The calculation of average values is performed
ing the following approximation of quantum tom
gram:

w(X,µ,ν, t)

(11)

=
J∑

j=1

δ
(
X −Xj(t)

)
δ
(
µ−µj(t)

)
δ
(
ν − νj (t)

)
,

where the summation is made over allJ trajectories;
Xj (t), µj(t), νj (t) are the coordinates of thej th
trajectory in {X,µ,ν} space at timet . It was found
that the use of this approximation in investigati
of the wave packet tunneling did not change res
essentially, in comparison with the exact quant
computation (Sections 3, 4).

3. Tunneling of a wave packet

3.1. The model

We choose the external potential to coincide w
the potential used in [16], for comparison of the resu
of simulation in quantum tomography approach w
those obtained by other methods:

(12)V (q)= mω2
0q

2

2
− bq3

3
.

The potential has only the second and third power
coordinate, so all its derivatives of order more than
third equal to zero. Evolution equation has the fo
(h̄= 1):

∂w

∂t
− µ

m

∂w

∂ν
+ 2

[
−∂V (q̃)

∂q

(
ν

2

∂

∂X

)

(13)

+ 1

6

∂3V (q̃)

∂q3

(
ν

2

∂

∂X

)3]
w = 0,

or

∂w

∂t
− µ

m

∂w

∂ν
+mω2

0ν
∂w

∂µ
− bν3

12

∂3w

∂X3

(14)+ bν

(
∂

∂X

)−1
∂2w

∂µ2
= 0,

and dynamical equations have the form

∂X

∂t
= bν3

12

1

w

∂2w

∂X2 ,

∂µ

∂t
=mω2

0ν − bν

w

(
∂

∂X

)−1
∂w

∂µ
,

(15)
∂ν

∂t
= −µ

m
.

We use atomic units throughout,h̄=me = |e| = 1,
whereme and e are the mass and charge of a fr
electron. The particle with massm = 2000 is re-
garded. Parameters of the potential areω0 = 0.01
and b = 0.2981. This potential has the minimu
at q = 0 (V (0) = 0) and maximum atq = 0.6709
(V (0.6709) = 0.015), therefore here we consider th
motion of a particle in the potential well with infinit
left wall and the barrier of height 0.015 atq = 0.6709.
This model problem roughly describes nonstation
tunneling of an atom from the trap.

Initially the particle represented by the wave pac
is situated to the left fromq = 0, its mean momen
tum is zero. We consider the problem with all param
ters fixed, except the initial mean coordinateq0 (initial
mean momentum equals zero, dispersions of the w
packet in coordinate and momentum spaces are≈ 0.3
and≈ 1.6, respectively). As in [16] we consider thre
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values ofq0: −0.2,−0.3 and−0.4. The most inter-
esting quantities characterizing tunneling are reac
probability and tunneling time. Reaction probability
defined as

(16)

∞∫
qa

∣∣ψ(x, t)
∣∣2dx,

whereqa = 0.6709 (the point where potential has t
maximum), the maximum value of reaction probab
ity is unity. Reaction probability shows what part
the wave packet is currently beyond the barrier.

Tunneling time of a wave packet is also an imp
tant feature of tunneling. From the variety of theor
ical methods to determine tunneling time [22–35],
choose the approach where tunneling time is ca
lated as a difference ofpresence times (see [35] for
review) at pointsxa andxb, located on the opposit
sides of the barrier:

(17)tT (xa, xb)= 〈
t (xb)

〉 − 〈
t (xa)

〉
.

The presence time at arbitrary pointx0 is

(18)
〈
t (x0)

〉 =
∫ ∞

0 t|ψ(x0, t)|2dt∫ ∞
0 |ψ(x0, t)|2dt

.

3.2. Reaction probability and tunneling time

The reaction probability (16) dependence on tim
presented in Fig. 1. All the results obtained by me
of our method are compared with the exact num
ical solution of Schrödinger equation. Three valu
of initial mean coordinate of the wave packetq0 =
−0.2,−0.3 and−0.4 are considered, and correspon
ing mean energies of the wave packet are 0.75V0,
1.25V0 and 2.0V0. Solid lines represent the resu
of simulation in the quantum tomography approa
(QT) and dashed lines correspond to the num
cal solution of Schrödinger equation (exact quant
computation). With the growth of|q0| the mean en
ergy increases, which enhances tunneling and reac
probability becomes larger (Fig. 1). The compone
that have passed through the barrier, cannot ret
because forq > 0.6709 potential decreases with t
growth of coordinate. Reaction probability therefo
permanently grows with time, at first rapidly, due
transmission of components with the energy hig
Fig. 1. The dimensionless reaction probabilities (16) for three va
of initial mean coordinate of the wave packet:q0 = −0.2,−0.3, and
−0.4 a.u. Solid lines are for the simulation in quantum tomogra
approach, dashed lines are for the exact numerical solution.

Fig. 2. Tunneling times with errors for several values of initial me
coordinate of the wave packetq0. Results of the QT simulation
(squares) are compared with exact quantum computation (circl

than the height of the barrier (classical solution of c
responding problem shows it), and then continue
increase due to tunneling. Due to the finite numbe
trajectories used in QT simulation, reaction proba
ity for QT case is slightly higher than for the exa
computation. For smaller number of trajectories (
shown) reaction probability curves resemble stairc
more evidently, and quantitative deviation from ex
result is stronger. Our results also agree with those
sented in Ref. [16] (method of “Wigner trajectories”

In Fig. 2 we present the dependence of tunne
time on initial mean position of the wave pack
Tunneling time is determined as the difference
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presence times (18) for pointsxa = 0.5 × 0.6709 and
xb = 2.0 × 0.6709 (atx = 0.6709 potential has th
maximum). The increase of|q0| (and correspondin
increase of initial mean energy) leads to the growth
average speed both of the transmitted part and of
wave packet as a whole. The transmitted part pa
the space between the pointsxa andxb faster, and we
observe the decrease of tunneling time (see Fig
Results of QT simulation (squares in Fig. 2) devi
from those of exact computation (circles) within t
range of errors. The deviation is maximal for lar
|q0|, probably, this is because for large|q0| the wave
packet leaves the well almost entirely (see Fig.
and the evolution of most trajectories correspond
the unbounded accelerated motion. In such situa
trajectories scatter and approximation (11) does
represent the quantum tomogram as exactly as
smaller|q0|.

4. Exciton tunneling

The method described in Section 2 can be u
to simulate the evolution of systems with more th
one degree of freedom. In this section such a po
bility is demonstrated. We consider the nonstation
tunneling of the composite particle, exciton in on
dimensional (1D) semiconductor structure (quant
wire).

In semiconductor quasi-one-dimensional na
structure the motion is allowed only in one directi
(quantum wire). Transverse motion is restricted du
strong confining barriers. Let us consider the pot
tial barrier in the direction of allowed motion. If a
excitonic wave packet prepared, and moves to the
rier, with the help of some detectors one can inve
gate scattering of the exciton.

We use the constants corresponding to GaAs
reference (dielectric constantε = 12.5, effective
masses of electron and hole areme = 0.07m(0)

e and
mh = 0.15m(0)

e , wherem(0)
e is the electron mass i

vacuum). 3D exciton in bulk GaAs is characteriz
by effective Bohr radiusa∗ ≈ 10 nm and binding en
ergy E∗

C ≈ 4 meV. We use unit of lengtha∗, unit
of massme , and h̄ = 1. Corresponding units of en
ergy and time areE0 = h̄2/(mea

∗2) ≈ 10 meV and
t0 = mea

∗/h̄ ≈ 100 fs.
The energy spectrum and wave functions of re
tive electron and hole motion in 3D exciton are an
ogous to those of hydrogen atom. But this is not
case for 1D exciton. First, electron–holeeffective in-
teraction potential for 1D problem is not Coulom
Indeed, if the exciton size in the direction of allow
motion is much greater than the width of the quant
wire (in the transverse direction), then the adiab
approximation is applicable and 3D interaction pot
tial must be averaged over the transverse degree
freedom. Resulting 1D effective potential substantia
differs from Coulomb (see [36]). Second, correspo
ing energy spectrum and wave functions of relat
motion also change in comparison with the hydrog
like states. We choose the wave function of the exc
ground state in Gaussian form.

Excitonic wave packet can be represented a
Gaussian wave packet in center-of-mass coordina

(19)

Ψ (xe, xh, t = 0)= e−r2/(2σ)

(πσ)1/4

e−(R−x0)
2/(2S)+iRp0

(πS)1/4
,

whereR = (mexe +mhxh)/(me +mh), r = |xe − xh|,
xe andxh are electron and hole coordinates,x0,p0 and
S are parameters: we choosex0 = −10,p0 = 3,S = 2
andσ = 1.

External potential is assumed to be zero everywh
except the region of barrier; we use the barrier
thickness equal to 5 nm, or 0.5 in accepted units. Fo
simplicity we set the barriers for electron and ho
to be the same and use both external and interac
potentials in quadratic form, cut at some distan
Then external potential is given by

(20)Vext(x)=
{
C −Dx2, if |x|<√

C/D,

0, if |x| � √
C/D,

C is the height of the barrier, its width is
√
C/D = 0.5.

Interaction potentialVint is also assumed to b
quadratic:

(21)Vint(r) =
{
Br2 −A, if r <

√
A/B,

0, if r �
√
A/B,

wherer = |xe − xh|. Potential (21) can describe, e.
e–h interaction in spatially indirect exciton, for e
ample in coupled quantum wires with large interw
separation [37]. Initial wave function of relative m
tion, chosen to be Gaussian with unity dispersi
is negligible within one percent accuracy atr = 3.
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Fig. 3. Probability density distributions in coordinate space
electron (ρe(x)) and hole (ρh(x)) at timest = 0 and t = 10. QT
simulation (solid lines) is compared with exact numerical solut
(dashed lines). All values are in units̄h = m∗

e = EC = 1, m∗
e is

electron effective mass andEC is binding energy of the exciton
The height of the barrierC = 1, width

√
C/D = 0.5.

Thus we choose the radius of electron–hole inte
tion to be

√
A/B = 3. We assume that we deal wi

a quasi-1D exciton with binding energyEC = 1/8.
In fact, for an exciton in quantum wire, the wa
function, binding energy, etc., are essentially infl
enced by the properties of quantum wire. We also
glect the possibility of electron and hole recombin
tion at the time scales studied. For stationary state
binding energy is−EC = ∫

Ψ ∗
int(r)Hint(r)Ψint(r) dr,

whereΨint(r) is the wave function of relative motion
Then, from Eq. (21) and condition

√
A/B = 3 we have

A≈ 18EC/17.
In coordinatesxe andxh the evolution equations de

pend on trajectory distribution (see Section 2), pot
tials are quadratic, therefore the problem conside
allows to employ all techniques, developed for one
gree of freedom (see Section 3).

Results of exciton tunneling simulation are p
sented in Figs. 3–5. In Figs. 3 and 4 we show
probability density for electron and hole in succe
sive time moments, barrier heightC = 1. Solid lines
in Figs. 3, 4 and circles in Fig. 5 correspond to Q
simulation, while dashed lines and squares repre
the exact numerical computation. Coincidence of
and exact computation results, initially very good, b
Fig. 4. Probability density distributions in coordinate space
electron (ρe(x)) and hole (ρh(x)) at timest = 20 andt = 30. QT
simulation (solid lines) is compared with exact numerical solut
(dashed lines). The same units and barrier parameters as in F
are used.

Fig. 5. Probability of exciton ionizationPIon due to electron and
hole scattering on the barrier in opposite directionsversus barrier
heightC. Circles and squares represent QT simulation and e
solution, respectively. Considered is the barrier of thickness 0.5. The
units are the same as in Fig. 3.

comes poorer with time (Figs. 3 and 4), but QT simu
tion reproduces main properties of exciton tunneli
wave packets broadening with time and due to inte
tion with the barrier, shrinking near the barrier, divi
ing into two parts (reflected and transmitted). Integ
values (in Fig. 5) obtained in QT approach also ag
with the exact results.

The electron and hole wave packets begin
motion from the pointx = −10 and, shrinking nea
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the barrier, are partially reflected and transmitted.
the case presented in Figs. 3, 4 about the hal
wave packets is transmitted. Interesting is the ques
about the ionization probability of exciton, induc
by interaction with the barrier. If electron and ho
are scattered in different directions on the barr
the distance between them can become quite la
but, in principle, there is a possibility that exciton
not ionized after such scattering, because one of
particles can be ‘pulled’ beyond the barrier, to t
other particle, due to electron–hole attraction.
the other hand, the electron–hole interaction is cu
the distance

√
A/B in our model. After the interactio

with the barrier the wave packet divides into reflec
and transmitted parts moving in opposite directio
For the time large enough, these two parts are w
separated, the separation between them grows
the leakage through the barrier in both directions
negligible. Denote the probability of ionization du
to electron and hole scattering in different directio
asPIon. Then, the probability to find electron and ho
in different directions in respect to the barrier, with e
distance being larger than

√
A/B, approachesPIon in

the limit t → ∞.
The probability of ionization due to electron an

hole scattering in different directions on the barr
PIon is presented in Fig. 5. The dependence on ba
height C is investigated. For very high and ve
low barriers PIon must approach zero, because
former case both particles are reflected and in
latter they both are transmitted. This trend is seen
Fig. 5, andPIon is maximal atC ≈ 1. Note that these
features are obvious for curves representing both
simulation (circles) and exact computation (squar
and in general two curves are quite close to each o

5. Conclusion

We presented the new method for quantum n
stationary processes simulation and applied it to t
neling of one-particle and two-particles wave pack
through the potential barriers. The method is ba
on tomographic representation of quantum mechan
and uses real nonnegative distribution function to
scribe the quantum state.

Our method gave the results in agreement w
those obtained by the method of “Wigner trajec
ries” and by exact quantum computation for tunnel
of both single-particle wave packet and two particl
We could calculate different characteristics of tunn
ing: reaction probability, probability densities, tunn
ing times and ionization probability for composite pa
ticle.

Proposed method operates with the ensemble o
jectories generated by the nonnegative state-descr
distribution function. The similar approach (in th
framework of “Wigner trajectories”), but with th
alternating-sign state-describing function, has been
ready successfully applied for the investigation
tunneling of two identical particles [36]. Many-bod
problem for fermionic and bosonic systems sho
be analyzed by means of the quantum tomogra
method to check if it is useful for extensive man
particles calculations, particularly to overcome “si
problem” in the simulation of many-fermion system
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