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Abstract

We propose a new method to simulate the quantum dynamics, based on the tomography representation. In its framework the
guantum state is described by real nonnegative distribution function. We demonstrate the method applying it to the wave packet
tunneling of one and two interacting particles.
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1. Introduction that uses nonnegative state-describing function, the
guantum tomogram. One can define a nonnegative
function, completely describing the quantum state, in

Simulation of quantum systems is popular nowa-
days and achieved considerable development recently.the phase space [1,4-6]. Quantum tomogram [7-12]

. : . is defined in the space aftaled and rotated refer-
(see, e.g,, reviews [1-3]). However, simulation meth- enceframes, that is not so intuitively clear as the phase
ods usually deal with the alternating-sign functions ’ y P
. ) . . space. But the advantage of quantum tomogram is that
(wave function, the Wigner function, etc.) describing

a quantum state. Probably, corresponding difficulties this fqn_ctmn is gprobability distribution, completely
. . . describing the quantum state [13,14].
with convergence of integrals (sign problem) could be
. ) . The quantum tomogramuw(X, i, v) depends on
resolved if one uses real nonnegative function to de- g :
: the parameters of scaling and rotation of reference
scribe the state. frames in the phase spac#: + where
In this Letter we propose a new method for com- b pace. = ug + vp,

puter simulation of nonstationary quantum processes,q’ p are coordmate_s and mo”.‘e”ta of the sy_stem.
Functionw(X, u, v) is nonnegative and normalized

in X direction, therefore it can be interpreted as
T, . a distribution function of valueX. Our method uses
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the dynamical equations obtained from the evolution
equation for the quantum tomogram. Introduction
of the trajectories possesses additional advantage
contrary to grid methods of Schrédinger equation
solution, trajectory methods, such as the method of
Wigner trajectories [1,15-17], do not require the
storing of large arrays representing the wave function.
Description of the method is presented in Section 2.
We apply the method to the tunneling of a wave
packet through the potential barrier, first to the single-
particle tunneling (Section 3), and then to the collec-
tive tunneling of two attracting particles (Section 4).
The latter case is represented by the exciton—compo-
site particle consisting of electron and hole—tunneling
in a nanostructure. Tunneling times, evolution of the
wave packet in coordinate and momentum spaces,
probability of exciton ionization due to electron and
hole scattering on the barrier were analyzed in details.

2. The method

The quantum tomogram (X, i, v) is connected
with the density matrix (¢, ¢’) as [18,19]

i(X—p(g+q)/2) AL dX
2

3

p(q,q/)=/w(X,u,q—q’)e
(1)

w(X. 1. v) Z/e—i<k<X—uq—vp)+pu>
u u\dpdkdqdu
at5a-5 )07 —

Xp( 2 2) 272

For the systems described by Hamiltonian

2

i

H=2—+V(q), 3
m

the integral transform (2), applied to the time-
dependent evolution equation for the density matrix,
gives [7]

mow av(g) (v o
—— 22— =—|w
m ov dag \20X
o0 ~
-1 n+1 82n+lv
22 =D (9)
= 2n+1)! g2t
v 9 2n+1
—— =0 4
x (2 ax) ’ @)
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where we usé = 1, consider a particle of mass in
one dimension (for simplicity), angl is given by

3 a3\ 1o
g=—\=—=) — (5)
ax/) oan

Let us rewrite Eq. (4) as
0w W X vy + 2 G (X )
—+ V) A+ — S MV
ar " ax XM op

ow
+ 5, G X m =0, (6)

where functionsG depend on quantum tomogram.
Eq. (6) has the form of continuity equation for the
guantum tomogram:

dw ow 8w).( ow . 0 7
ar o Tax Tttt (")
that is analogous to the continuity equation for clas-
sical distribution function and Liouville equation. As
known, the characteristics of Liouville equation are
the classical trajectories in phase space and they obey
Hamilton equations of motion. Analogously, from
Egs. (6) and (7) we derive the motion equations in
space( X, u, v}:

ow .

X =Gx(X, u,v),
‘.} = GV(X’ Mv U)'

= Gu(X, p,v),
8

Generalization for the case of more variables is
straightforward, the form of equations does not
change. Function§ for the problem under investiga-
tion are given in Section 3.

As functionsG depend on the tomogram, and we
avoid its direct calculation, it is necessary to use local
approximation for the quantum tomogram:

w(X, 1, v)

— woe_[(y_)’a([))Aa(f)(y_)’a([))""ba([)(y_Ya(f))]’

©)

where y = {X, u,v}, and y, is the point under
consideration. Parameters of this approximation are
matrix A, and vectorb,. Calculating the average
y — y, and their average product, we obtaip and
b,. After that, functionsG are known and dynamical
equations (8) can be solved numerically.

The local approximation (9) is used only for the cal-
culation of r.h.s. in the equations of motion (8). Un-
like the classical statistical mechanics, the trajectories
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in space{X, u, v} are not independent and approxi- those obtained by other methods:

mation (9) takes the nonlocal character of quantum 5 2 3

evolution into account. This approximation is valid (@)= mwgq— bi (12)

for smooth quantum tomogram and dense ensemble 2 3

of trajectories (if there are few trajectories in the re- The potential has only the second and third powers of
gion around the given point, then the approximation coordinate, so all its derivatives of order more than the

(9) will not reconstruct the quantum tomogram, due third equal to zero. Evolution equation has the form
to lack of statistics). Approximation (9) also works (5 = 1):

not well for unbounded motion, because the trajec-
tories scatter with time. Comparison with the exact 9w 1 9w 2[ 3V(4)( )
20X

numerical solution in considered cases shows that ap- 3  m dv dq
proximation (9) holds for these problems (see Sec- 183V(G) (v 8 3
tions 3, 4). Z 5|5 [w=0.
. . . 6 dg 20X
Finally, consider the calculation of average values. (13)
For an arbitrary operatot(q, p) corresponding aver- or
age(A) is calculated as [20]
ow pow > dw b3 atw
. _—— V—— ——
(A) = f A, v)e’Xw(X, w,v)ydXdudv, (10) at  m v 0 o 12 9x3
3 32
where A(u,v) is the Fourier component of Weyl +bv (8X> 2 =0, (14)
symbol A% (¢, p) of operatorA(g, p) (see, e.qg., [1, H
21]). and dynamical equations have the form
The calculation of average values is performed us- 34 a2
ing the following approximation of quantum tomo- 2% _ bLia_w
gram: ot 12 w 8X2
-1
M e = 2V dw

w(X, @, v,1) at 0 ax ) aw’

d av "

Z (X =X;0)8(1—pnj(®)s(v—vj®), FrR (15)

B (11) We use atomic units throughotit=m, = |e| =1,

wherem, and e are the mass and charge of a free
electron. The particle with masa = 2000 is re-
garded. Parameters of the potential asg = 0.01
and b = 0.2981. This potential has the minimum

=0 (V(0) = 0) and maximum aty = 0.6709
(V(0.6709 = 0.015), therefore here we consider the
motion of a particle in the potential well with infinite
left wall and the barrier of height 015 atg = 0.6709.
This model problem roughly describes nonstationary
tunneling of an atom from the trap.

Initially the particle represented by the wave packet
is situated to the left frong = 0, its mean momen-
3.1. The model tum is zero. We consider the problem with all parame-

ters fixed, except the initial mean coordinagginitial

We choose the external potential to coincide with mean momentum equals zero, dispersions of the wave
the potential used in [16], for comparison of the results packet in coordinate and momentum spacesafe3
of simulation in quantum tomography approach with and~ 1.6, respectively). As in [16] we consider three

where the summation is made over altrajectories;
X;(t), uj(), vj(t) are the coordinates of thgth
trajectory in{X, u, v} space at time. It was found
that the use of this approximation in investigation
of the wave packet tunneling did not change results
essentially, in comparison with the exact quantum
computation (Sections 3, 4).

3. Tunneling of a wave packet
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values ofgg: —0.2, —0.3 and—0.4. The most inter-
esting quantities characterizing tunneling are reaction
probability and tunneling time. Reaction probability is
defined as

/Iw(x,t)lzdx, (16)
da

whereg, = 0.6709 (the point where potential has the
maximum), the maximum value of reaction probabil-
ity is unity. Reaction probability shows what part of
the wave packet is currently beyond the barrier.

Tunneling time of a wave packet is also an impor-
tant feature of tunneling. From the variety of theoret-
ical methods to determine tunneling time [22—-35], we
choose the approach where tunneling time is calcu-
lated as a difference giresence times (see [35] for
review) at pointsy, andx, located on the opposite
sides of the barrier:

17 (xa, xp) = (1 (xp)) — (£ (xa)). an
The presence time at arbitrary poitis

>t . D)|2dt
(t(x0)) = Jo_ t1¥(xo0, 1) (18)

o W, 0)2dt
3.2. Reaction probability and tunneling time

The reaction probability (16) dependence on time is
presented in Fig. 1. All the results obtained by means
of our method are compared with the exact numer-
ical solution of Schrodinger equation. Three values
of initial mean coordinate of the wave packgt =
—0.2, —0.3 and—0.4 are considered, and correspond-
ing mean energies of the wave packet arés0p,
1.25Vp and 20Vp. Solid lines represent the results
of simulation in the quantum tomography approach
(QT) and dashed lines correspond to the numeri-
cal solution of Schrédinger equation (exact quantum
computation). With the growth ofgo| the mean en-
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Fig. 1. The dimensionless reaction probabilities (16) for three values
of initial mean coordinate of the wave packg:= —0.2, —0.3, and
—0.4 a.u. Solid lines are for the simulation in quantum tomography
approach, dashed lines are for the exact numerical solution.
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Fig. 2. Tunneling times with errors for several values of initial mean
coordinate of the wave packep. Results of the QT simulation
(squares) are compared with exact quantum computation (circles).

than the height of the barrier (classical solution of cor-
responding problem shows it), and then continues to
increase due to tunneling. Due to the finite number of
trajectories used in QT simulation, reaction probabil-
ity for QT case is slightly higher than for the exact

computation. For smaller number of trajectories (not

ergy increases, which enhances tunneling and reactionshown) reaction probability curves resemble staircase
probability becomes larger (Fig. 1). The components, more evidently, and quantitative deviation from exact
that have passed through the barrier, cannot return,resultis stronger. Our results also agree with those pre-
because foy > 0.6709 potential decreases with the sented in Ref. [16] (method of “Wigner trajectories”).
growth of coordinate. Reaction probability therefore In Fig. 2 we present the dependence of tunneling
permanently grows with time, at first rapidly, due to time on initial mean position of the wave packet.
transmission of components with the energy higher Tunneling time is determined as the difference of
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presence times (18) for pointg = 0.5 x 0.6709 and The energy spectrum and wave functions of rela-
xp = 2.0 x 0.6709 (atx = 0.6709 potential has the tive electron and hole motion in 3D exciton are anal-
maximum). The increase dfo| (and corresponding  ogous to those of hydrogen atom. But this is not the
increase of initial mean energy) leads to the growth of case for 1D exciton. First, electron—haffective in-
average speed both of the transmitted part and of theteraction potential for 1D problem is not Coulomb.
wave packet as a whole. The transmitted part passesindeed, if the exciton size in the direction of allowed
the space between the pointsandx, faster, and we  motion is much greater than the width of the quantum
observe the decrease of tunneling time (see Fig. 2). wire (in the transverse direction), then the adiabatic
Results of QT simulation (squares in Fig. 2) deviate approximation is applicable and 3D interaction poten-
from those of exact computation (circles) within the tial must be averaged over the transverse degrees of
range of errors. The deviation is maximal for large freedom.Resulting 1D effective potential substantially
lqol, probably, this is because for largg| the wave differs from Coulomb (see [36]). Second, correspond-
packet leaves the well almost entirely (see Fig. 1), ing energy spectrum and wave functions of relative
and the evolution of most trajectories corresponds to motion also change in comparison with the hydrogen-
the unbounded accelerated motion. In such situation like states. We choose the wave function of the exciton
trajectories scatter and approximation (11) does not ground state in Gaussian form.

represent the quantum tomogram as exactly as for Excitonic wave packet can be represented as a
smaller|qo|. Gaussian wave packet in center-of-mass coordinates

¢—?/(20) —(R—x0)%/(25)+iRpo

. . ¥ (et =0)= (mo)t/4 ()4
4. Exciton tunneling (29)

)

whereR = (mex. +mpxp)/(Mme +mp), r =|xe — xpl,
The method described in Section 2 can be used x. andx, are electron and hole coordinateg, po and
to simulate the evolution of systems with more than $ are parameters: we choogg= —10,po=3,5 =2
one degree of freedom. In this section such a possi- ando = 1.
bility is demonstrated. We consider the nonstationary ~ External potential is assumed to be zero everywhere
tunneling of the composite particle, exciton in one- except the region of barrier; we use the barrier of
dimensional (1D) semiconductor structure (quantum thickness equal to 5 nm, ot®in accepted units. For
wire). simplicity we set the barriers for electron and hole
In semiconductor quasi-one-dimensional nano- to be the same and use both external and interaction
structure the motion is allowed only in one direction potentials in quadratic form, cut at some distance.
(quantum wire). Transverse motion is restricted due to Then external potential is given by
strong confining barriers. Let us consider the poten- 2 . —_—
tial barrier in thge direction of allowed motion. I[; an  Vexi(x) = {C - Dt ?f Il <VC/D. (20)
excitonic wave packet prepared, and moves to the bar- 0. if |x| > VC/D,
rier, with the help of some detectors one can investi- C is the height of the barrier, its widthigC/D = 0.5.
gate scattering of the exciton. Interaction potentialViy; is also assumed to be
We use the constants corresponding to GaAs for quadratic:
reference (dielectric constant = 12.5, effective . R
masses of electron and hole ang = 0.07m§,0) and Vint(r) = {Brz —4 !f r<vA/B, (21)
my = 0.15m§°), Wheremﬁ,o) is the electron mass in 0, if r>./A/B,
vacuum). 3D exciton in bulk GaAs is characterized wherer = |x, — x;|. Potential (21) can describe, e.g.,
by effective Bohr radiug* ~ 10 nm and binding en-  e—h interaction in spatially indirect exciton, for ex-
ergy E; ~ 4meV. We use unit of lengtl*, unit ample in coupled quantum wires with large interwire
of massm,., and# = 1. Corresponding units of en-  separation [37]. Initial wave function of relative mo-
ergy and time areEg = #2/(m.a*?) ~ 10 meV and tion, chosen to be Gaussian with unity dispersion,
to = mea™/h ~ 100 fs. is negligible within one percent accuracy rat= 3.



222

0.4 r T
t=0

0.0

0.0

-10 10

Fig. 3. Probability density distributions in coordinate space for
electron p.(x)) and hole p,(x)) at timest =0 andt = 10. QT
simulation (solid lines) is compared with exact numerical solution
(dashed lines). All values are in units=m} = Ec = 1, m} is
electron effective mass anflc is binding energy of the exciton.
The height of the barrie€ = 1, width ./C/D = 0.5.

Thus we choose the radius of electron—hole interac-
tion to be/A/B = 3. We assume that we deal with
a quasi-1D exciton with binding energyc = 1/8.

In fact, for an exciton in quantum wire, the wave
function, binding energy, etc., are essentially influ-
enced by the properties of quantum wire. We also ne-
glect the possibility of electron and hole recombina-
tion at the time scales studied. For stationary state the
binding energy is-Ec = [ W.(r) Hint(r)Wint(r) dr,
where¥in(r) is the wave function of relative motion.
Then, from Eqg. (21) and conditiofA/B = 3 we have
A~18Ec/17.

In coordinates., andx, the evolution equations de-
pend on trajectory distribution (see Section 2), poten-
tials are quadratic, therefore the problem considered
allows to employ all techniques, developed for one de-
gree of freedom (see Section 3).

Results of exciton tunneling simulation are pre-
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Fig. 4. Probability density distributions in coordinate space for
electron pe(x)) and hole py(x)) at timest = 20 andr = 30. QT
simulation (solid lines) is compared with exact numerical solution
(dashed lines). The same units and barrier parameters as in Fig. 3

are used.
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Fig. 5. Probability of exciton ionizatiorP|o,, due to electron and
hole scattering on the barrier in opposite directiomssus barrier
height C. Circles and squares represent QT simulation and exact
solution, respectively. Considered is the barrier of thicknessThe
units are the same as in Fig. 3.

comes poorer with time (Figs. 3 and 4), but QT simula-
tion reproduces main properties of exciton tunneling:

sented in Figs. 3-5. In Figs. 3 and 4 we show the wave packets broadening with time and due to interac-
probability density for electron and hole in succes- tion with the barrier, shrinking near the barrier, divid-
sive time moments, barrier heighit= 1. Solid lines ing into two parts (reflected and transmitted). Integral
in Figs. 3, 4 and circles in Fig. 5 correspond to QT values (in Fig. 5) obtained in QT approach also agree
simulation, while dashed lines and squares representwith the exact results.

the exact numerical computation. Coincidence of QT  The electron and hole wave packets begin the
and exact computation results, initially very good, be- motion from the pointt = —10 and, shrinking near
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the barrier, are partially reflected and transmitted. For ries” and by exact quantum computation for tunneling
the case presented in Figs. 3, 4 about the half of of both single-particle wave packet and two particles.
wave packets is transmitted. Interesting is the question We could calculate different characteristics of tunnel-
about the ionization probability of exciton, induced ing: reaction probability, probability densities, tunnel-
by interaction with the barrier. If electron and hole ingtimes and ionization probability for composite par-
are scattered in different directions on the barrier, ticle.
the distance between them can become quite large, Proposed method operates with the ensemble of tra-
but, in principle, there is a possibility that exciton is jectories generated by the nonnegative state-describing
not ionized after such scattering, because one of thedistribution function. The similar approach (in the
particles can be ‘pulled’ beyond the barrier, to the framework of “Wigner trajectories”), but with the
other particle, due to electron—hole attraction. On alternating-sign state-describing function, has been al-
the other hand, the electron—hole interaction is cut at ready successfully applied for the investigation of
the distance/A/B in our model. After the interaction  tunneling of two identical particles [36]. Many-body
with the barrier the wave packet divides into reflected problem for fermionic and bosonic systems should
and transmitted parts moving in opposite directions. be analyzed by means of the quantum tomography
For the time large enough, these two parts are well method to check if it is useful for extensive many-
separated, the separation between them grows andparticles calculations, particularly to overcome “sign
the leakage through the barrier in both directions is problem” in the simulation of many-fermion system.
negligible. Denote the probability of ionization due
to electron and hole scattering in different directions
as Pion. Then, the probability to find electron and hole  Acknowledgements
in different directions in respect to the barrier, with e-h
distance being larger thayfA/B, approachegon in Authors are grateful to INTAS, RFBR and Ministry
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