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On marginalization of phase-space distribution functions
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Abstract

We discuss marginalization procedures based on integration of quantum phase-space distribution functions over a family
of phase-space manifolds. We show that under some conditions the resulting marginals are aways nonnegative. © 1999

Published by Elsevier Science B.V. All rights reserved.
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Phase-space representations of quantum mechan-
ics have proven to be very useful in many aress,
particularly in statistical physics and quantum optics
(for review see, e.g., [1-3]). The main feature of the
phase-space approach is the possibility of expressing
guantum-mechanical expectation values in the same
way as it is done in classical statistical mechanics,
employing integration over the phase space I':

()= [ dpdaa(p.a)p(p.q) 1)

The functions a( p,q) and p(p,q) in the integrand
represent the observable quantity .o/ and the appro-
priate phase-space distribution function describing
the state of the system considered, respectively.
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It is well-known that quantum phase-space distri-
bution functions may assume negative values and
hence they cannot be directly interpreted as probabil-
ity densities in the usual meaning. To improve this
situation, various ‘marginalization’ or ‘averaging’
procedures leading to proper probability densities
have been suggested, especially for the Wigner dis-
tribution function [4]. The most obvious one seems
to be the integrating out some of the variables, as it
is done in probability theory (cf., e.g., [5]). Unfortu-
nately, such marginals are not always positive and /or
correct from the physical point of view (cf., eg.,
[2]). Moreover, even the correct margina position
and momentum distributions are not sufficient to
reconstruct the quantum state [6], therefore such
simple marginalization is a one-way transformation
only.

Recently, there has been a renewed interest in this
subject, in connection with the tomographic recon-
struction of quantum states, proposed first in the
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context of the Wigner distribution function by
Bertrand and Bertrand [7] and shortly after by Vogel
and Risken [8]. In this case the respective marginals
were defined as phase-space line integrals (Radon
transforms) of the Wigner distribution function

pw(p,Q):

w(x,0) =

X pw(P,d) (2

For a recent review on this topic see, e.g. [9], and
[10].

In this Letter we will discuss marginalization of
phase-space distributions through integration over a
family of phase-space manifolds 9¢(&) parametrized

by §=(£1.85.-.-.6)

,U«(f) ='/;JE(§)

Such transformations are generalizations of the Radon
transform used in quantum state tomography [13]
and were intensively studied in the field of integral
geometry [11,12]. In the context of quantum phase-
space distribution functions they were, to the best of
our knowledge, first discussed by the present author
[14].

We will perform our considerations within the
framework of A-representations introduced by Srini-
vas and Wolf [15] and studied further by many
authors (see, e.g., [16,17]). This class contains all
particular phase-space representations of quantum
mechanics being of practical interest, including the
Weyl-Wigner—Moyal one as the simplest and also
most regular case.

For simplicity sake, we restrict ourselves in the
following to the case when I"= R? and when (&)
is a family of sufficiently regular curves in the
phase-space plane, described by the equation
o(p,g;&) = 0. We assume aso that the phase-space
function ¢( p,q;¢) corresponds to a ‘ quadrature ob-
servable’ 7, represented aternatively by a quantum
mechanical operator F, related to ¢( p,q; &) accord-
ing to the correspondence rules specific for the cho-
sen A-representation, which we will express con-
C|se|y by using the convenient 2 relation sign as

F2o(p,qg;¢).

dpdq p(p,q) ©)

Under these assumptions, we could rewrite Eq.
(3) in the following form:

u(¢) = [ dpdad(e(p.aié))p(p.a)  (4)

where 8(¢(p,qg;€)) is the S-distribution concen-
trated on that curve. Using the integral representation
of the S&-distribution with the exponential expanded
into power series we get:

,U~(§)_ (5)
where
$(£k) = [ dpdae*(p.aié)p(p.a) (6)

The last equation has the form an expectation value
with the function ¢(p,q;¢&) in kth power, which in
general case does not correspond to (FK) =
Tr[ Ifkﬁ], where p is the density operator. It is
caused by the fact that phase-space functions corre-
sponding to operator products are nonlocal and non-
commutative ‘ % 4-products’ of the respective compo-
nents, not the ordinary poi ntW|se function products
ie, if A2ap,q) and B2b(p,q) then AB2
(ax,b)(p,.

Let us assume now that ¢( p,q; &) was chosen in
such ingenious way that for any k the k-fold *,-
product for the given A-representation is in this
particular case equal to the ordinary pointwise k-fold
product. Let further p = X;;¢,¢;"[i) (| be the expan-
sion of the density operator into the dynamics |i) { jl
of (orthonormal) eigenvectors |i) of the quadrature
operator F corresponding to the eigenvalue A;. Then
we have:

(&) =TI Fh] = T ale (7)
|
Inserting Eq. (7) back into Eq. (5) we get, after some
algebra, an explicitly nonnegative expression:
n(¢) = Z|Ci|2‘3()‘i) (8)
I
Therefore, we have shown that the following theo-

rem holds for any A-representation of quantum me-
chanics:

Theorem. Let I(¢) be afamily of phase-space
manifolds parametrized by £ < R", defined by the
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equation ¢(p,q;€) =0, where ¢ is a sufficiently
smooth function.
If forany ke N
@ka oa ka0 = ()"

k—times

9

then the quantity

w(€) =  dpdgpy(p.a)
NVE)

is nonnegative for any phase-space distribution
PP, Q).

As an illustration, let us consider some examples
evolving commonly employed phase-space represen-
tations.

a. Weyl-Wigner—Moyal representation. We adopt
here the following definition of the respective *,,~
product [18]:

(axyb)(p,q)

It could be verified by a direct calculation that the
function:

X(Pa;é) =&p+&a+ & (11)
where ¢ € R, fulfills the requirement contained in
Eq. (9).

This particular case corresponds exactly to the
so-called ‘symplectic tomography’, introduced and
investigated extensively by Mancini, Man'ko and
Tombesi [19-23] in the context of various ap-
proaches to quantum tomography. The respective
integral transform is invertible and therefore the
resulting marginal distribution could be even used to
establish a classical-like description of quantum me-
chanics [23].

The nonnegativity of the integral transform u(¢)
for all Wigner distribution functions (WDFs) implies
(cf., eg. [2], par. 2.1), that 8( x(p,q;&)) could be
regarded as a (generalized) WDF (cf [1]. pp. 366—367
for another derivation and discussion). It could be
shown (cf., e.g., Appendix C in Ref. [25]) that

0(é,p+ &,q+ &;) are the only 8-shaped WDFs,
which in turn indicates that there are no nonlinear
curves for which Eg. (4) is nonnegative for dl
possible WDFs. On the other hand, it is evident from
the form of Eg. (10) that any nonlinear term in
x(p,q; &) will break Eqg. (9).

The invariance of WDFs under affine symplectic
phase-space transformations (cf., eg., [26,27]) and
the respective equivariance of the ,-product en-
ables one to simplify the things considerably.
Namely, by using such transformations the quantity
x(p,g;&) in Eqg. (11) could be expressed as a multi-
ple of the new momentum p' (or the new position
g') which trivializes the evaluation of Eq. (4). More-
over, the equality y%,, ... %, x= x“ can be then
transformed to pk,, ... %, p =p* (or to
gky ...k 0 = q’k) which is fulfilled for the
Weyl-Wigner—Moyal and some other phase-space
representations [28], including the standard and antis-
tandard representations discussed below.

b. Sandard and Antistandard representations. The
respective *-products can be defined here as follows
[24]:

(axsb)(p.q)

—

[0 9
=a(p.q)exp{—lﬁ(a—pa—q)}b(pm (12)

for the standard representation, and
(ax,b)(p.q)

— o

Jd a
a( p,q)exp{lﬁ( 7 ap)}b(p,Q) (13)
for the antistandard one.

It could be easily verified that the function
x(p,q;€) defined in Eq. (11) above may fulfill the
requirement stated in Eg. (9) only when one of the
parameters, &, or &,, is equal to zero. The resulting
integral transforms are here rather trivial and nonin-
vertible, e.g.:

us(€) = | dpdad(£,a-+ &) ps(p.a)

- [ v -2 (14
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which is, up to rescaling, equivalent to integrating
out one of the variables in the respective distribution
function p( p,q).
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