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On marginalization of phase-space distribution functions
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Abstract

We discuss marginalization procedures based on integration of quantum phase-space distribution functions over a family
of phase-space manifolds. We show that under some conditions the resulting marginals are always nonnegative. q 1999
Published by Elsevier Science B.V. All rights reserved.
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Phase-space representations of quantum mechan-
ics have proven to be very useful in many areas,
particularly in statistical physics and quantum optics
Ž w x.for review see, e.g., 1–3 . The main feature of the
phase-space approach is the possibility of expressing
quantum-mechanical expectation values in the same
way as it is done in classical statistical mechanics,
employing integration over the phase space G :

² :AA s d p dq a p ,q r p ,q 1Ž . Ž . Ž .H
G

Ž . Ž .The functions a p,q and r p,q in the integrand
represent the observable quantity AA and the appro-
priate phase-space distribution function describing
the state of the system considered, respectively.
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It is well-known that quantum phase-space distri-
bution functions may assume negative values and
hence they cannot be directly interpreted as probabil-
ity densities in the usual meaning. To improve this
situation, various ‘marginalization’ or ‘averaging’
procedures leading to proper probability densities
have been suggested, especially for the Wigner dis-

w xtribution function 4 . The most obvious one seems
to be the integrating out some of the variables, as it

Ž w x.is done in probability theory cf., e.g., 5 . Unfortu-
nately, such marginals are not always positive andror

Žcorrect from the physical point of view cf., e.g.,
w x.2 . Moreover, even the correct marginal position
and momentum distributions are not sufficient to

w xreconstruct the quantum state 6 , therefore such
simple marginalization is a one-way transformation
only.

Recently, there has been a renewed interest in this
subject, in connection with the tomographic recon-
struction of quantum states, proposed first in the
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context of the Wigner distribution function by
w xBertrand and Bertrand 7 and shortly after by Vogel

w xand Risken 8 . In this case the respective marginals
Žwere defined as phase-space line integrals Radon

.transforms of the Wigner distribution function
Ž .r p,q :W

1
w x ,u s d p dq d xyqcosuypsinuŽ . Ž .H2

G2pŽ .

=r p ,q 2Ž . Ž .W

w xFor a recent review on this topic see, e.g. 9 , and
w x10 .

In this Letter we will discuss marginalization of
phase-space distributions through integration over a

Ž .family of phase-space manifolds M j parametrized
Ž .by js j ,j , . . . ,j1 2 n

m j s d p dq r p ,q 3Ž . Ž . Ž .H
Ž .M j

Such transformations are generalizations of the Radon
w xtransform used in quantum state tomography 13

and were intensively studied in the field of integral
w xgeometry 11,12 . In the context of quantum phase-

space distribution functions they were, to the best of
our knowledge, first discussed by the present author
w x14 .

We will perform our considerations within the
framework of D-representations introduced by Srini-

w xvas and Wolf 15 and studied further by many
Ž w x.authors see, e.g., 16,17 . This class contains all

particular phase-space representations of quantum
mechanics being of practical interest, including the
Weyl–Wigner–Moyal one as the simplest and also
most regular case.

For simplicity sake, we restrict ourselves in the
2 Ž .following to the case when G'R and when M j

is a family of sufficiently regular curves in the
phase-space plane, described by the equation
Ž .w p,q;j s0. We assume also that the phase-space

Ž .function w p,q;j corresponds to a ‘quadrature ob-
servable’ FF, represented alternatively by a quantum

ˆ Ž .mechanical operator F, related to w p,q;j accord-
ing to the correspondence rules specific for the cho-
sen D-representation, which we will express con-

Dcisely by using the convenient s relation sign as
Dˆ Ž .Fsw p,q;j .

Under these assumptions, we could rewrite Eq.
Ž .3 in the following form:

m j s d p dq d w p ,q ;j r p ,q 4Ž . Ž . Ž . Ž .Ž .H
G

Ž Ž ..where d w p,q;j is the d-distribution concen-
trated on that curve. Using the integral representation
of the d-distribution with the exponential expanded
into power series we get:

k`1 i xŽ .
m j s d x f j ,k 5Ž . Ž . Ž .ÝH

2p k!R ks0

where

f j ,k s d p dq w k p ,q ;j r p ,q 6Ž . Ž . Ž . Ž .H
G

The last equation has the form an expectation value
Ž .with the function w p,q;j in k th power, which in

² k:general case does not correspond to FF s
kˆTr F r , where r is the density operator. It isˆ ˆ

caused by the fact that phase-space functions corre-
sponding to operator products are nonlocal and non-
commutative ‘w -products’ of the respective compo-D

nents, not the ordinary pointwise function products,
D D Dˆ ˆ ˆ ˆŽ . Ž .i.e., if Asa p,q and Bsb p,q then ABs

Ž .Ž .aw b p,q .D

Ž .Let us assume now that w p,q;j was chosen in
such ingenious way that for any k the k-fold w -D

product for the given D-representation is in this
particular case equal to the ordinary pointwise k-fold

) < : ² <product. Let further rsÝ c c i j be the expan-ˆ i j i j
< : ² <sion of the density operator into the dynamics i j

Ž . < :of orthonormal eigenvectors i of the quadrature
ˆoperator F corresponding to the eigenvalue l . Theni

we have:
2k kˆ < <f j ,k sTr F r s l c 7Ž . Ž .ˆ Ý i i

i

Ž . Ž .Inserting Eq. 7 back into Eq. 5 we get, after some
algebra, an explicitly nonnegative expression:

< < 2m j s c d l 8Ž . Ž . Ž .Ý i i
i

Therefore, we have shown that the following theo-
rem holds for any D–representation of quantum me-
chanics:

Ž .Theorem. Let M j be a family of phase-space
manifolds parametrized by jgR n, defined by the
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Ž .equation w p,q;j s0, where w is a sufficiently
smooth function.

If for any kgN

Ž .9

then the quantity

m j s d p dq r p ,qŽ . Ž .H D
Ž .M j

is nonnegative for any phase-space distribution
Ž .r p,q .D

As an illustration, let us consider some examples
evolving commonly employed phase-space represen-
tations.

a. Weyl–Wigner–Moyal representation. We adopt
here the following definition of the respective w -W

w xproduct 18 :

aw b p ,qŽ . Ž .W

§ ™ § ™

" E E E E
sa p ,q exp y b p ,qŽ . Ž .½ 5ž /2i E p E q E q E p

10Ž .

It could be verified by a direct calculation that the
function:

x p ,q ;j sj pqj qqj 11Ž . Ž .1 2 3

where j gR, fulfills the requirement contained ini
Ž .Eq. 9 .

This particular case corresponds exactly to the
so-called ‘symplectic tomography’, introduced and
investigated extensively by Mancini, Man’ko and

w xTombesi 19–23 in the context of various ap-
proaches to quantum tomography. The respective
integral transform is invertible and therefore the
resulting marginal distribution could be even used to
establish a classical-like description of quantum me-

w xchanics 23 .
Ž .The nonnegativity of the integral transform m j

Ž .for all Wigner distribution functions WDFs implies
Ž w x . Ž Ž ..cf., e.g. 2 , par. 2.1 , that d x p,q;j could be

Ž . Ž w xregarded as a generalized WDF cf 1 . pp. 366–367
.for another derivation and discussion . It could be

Ž w x.shown cf., e.g., Appendix C in Ref. 25 that

Ž .d j pqj qqj are the only d-shaped WDFs,1 2 3

which in turn indicates that there are no nonlinear
Ž .curves for which Eq. 4 is nonnegative for all

possible WDFs. On the other hand, it is evident from
Ž .the form of Eq. 10 that any nonlinear term in

Ž . Ž .x p,q;j will break Eq. 9 .
The invariance of WDFs under affine symplectic

Ž w x.phase-space transformations cf., e.g., 26,27 and
the respective equivariance of the w -product en-W

ables one to simplify the things considerably.
Namely, by using such transformations the quantity
Ž . Ž .x p,q;j in Eq. 11 could be expressed as a multi-

X Žple of the new momentum p or the new position
X. Ž .q which trivializes the evaluation of Eq. 4 . More-

over, the equality xw . . . w xsx k can be thenW W
X X X k Žtransformed to p w . . . w p s p or toW W

X X X k .q w . . . w q sq which is fulfilled for theW W

Weyl–Wigner–Moyal and some other phase-space
w xrepresentations 28 , including the standard and antis-

tandard representations discussed below.

b. Standard and Antistandard representations. The
respective w-products can be defined here as follows
w x24 :

aw b p ,qŽ . Ž .S

§ ™

E E
sa p ,q exp yi" b p ,q 12Ž . Ž . Ž .½ 5ž /E p E q

for the standard representation, and

aw b p ,qŽ . Ž .A

§ ™

E E
sa p ,q exp i" b p ,q 13Ž . Ž . Ž .½ 5ž /E q E p

for the antistandard one.
It could be easily verified that the function
Ž . Ž .x p,q;j defined in Eq. 11 above may fulfill the

Ž .requirement stated in Eq. 9 only when one of the
parameters, j or j , is equal to zero. The resulting1 2

integral transforms are here rather trivial and nonin-
vertible, e.g.:

m j s d p dq d j qqj r p ,qŽ . Ž . Ž .HS 2 3 S
G

j 3
s d p r p ,y 14Ž .H S ž /jG 2
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which is, up to rescaling, equivalent to integrating
out one of the variables in the respective distribution

Ž .function r p,q .
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