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Abstract
The gauge invariance of the evolution equations of tomographic probability
distribution functions of quantum particles in an electromagnetic field is
illustrated. Explicit expressions for the transformations of ordinary tomograms
of states under a gauge transformation of electromagnetic field potentials are
obtained. Gauge-independent optical and symplectic tomographic quasi-
distributions and tomographic probability distributions of states of quantum
system are introduced, and their evolution equations have the Liouville
equation in corresponding representations as the classical limits are found.

Keywords: quantum tomography, gauge invariance, evolution equation,
optical tomogram, symplectic tomogram

1. Introduction

Gauge invariance is a fundamental quality of classical field theory and quantum electrody-
namics [1, 2], as well as of Yang—Mills theory [3]. In quantum mechanics the gauge transfor-
mation makes the specific change [4] of the wave function [5] phase.

At first gauge invariance was uncovered in classical electrodynamics. The global gauge
invariance leads to the law of conservation of electric charge due to Noether’s theorem. In
gauge-invariant theories all observable quantities, such as energy levels and cross sections of
various processes calculated using the gauge-transformed and source fields, are the same.

For the formulation of quantum mechanics in phase space many scientists suggested dif-
ferent kinds of quasidistributions to represent the quantum states. For example, the Wigner
function [6], Blohintsev function [7], Glauber—Sudarshan P—function [8, 9], and Husimi
Q—function [10] can be effectively used to formulate the quantum evolution and obtain the
energy levels of quantum states. All these quasidistributions are related to wave function or
density matrix by integral transformations.
1751-8121/17/155302+16$33.00  © 2017 IOP Publishing Ltd  Printed in the UK 1
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The Wigner function has been proposed to describe the quantum states by analogy with the
description of classical states, taking into account fluctuations of the position and momentum
of non-negative density distribution in the phase space of the system. Using the Wigner func-
tion in a series of works [11-14] the problem of quantum slightly non-ideal gas of uncharged
particles with an interaction was first considered assuming satisfaction of the conditions of
applicability of perturbation theory, and the oscillations in a Fermi liquid were explored [15].
However, the Wigner function can be negative, and therefore, it is not a probability distribution.

In [16] the probability representation of quantum mechanics was introduced (see, e.g.
[17]), in which the quantum states are described by fair probabilities, called quantum tomo-
grams. Different kinds of tomograms, e.g. optical tomograms [18, 19], symplectic tomograms
[20], and spin-tomograms [21, 22] give the realization of star-product quantization schemes
based on existence of specific quantizer and dequantizer operators [23, 24]. The star-product
schemes bring about the constructions for non-commutative algebra of the Wigner—Weyl sym-
bols of operators acting on a Hilbert space (see, e.g. [25-27]).

The evolution equation and energy spectrum equation for an optical tomogram were
obtained in [28]. The evolution equation for a symplectic tomogram was obtained in [16].
On the other hand, the gauge properties known for the Schrodinger equation for the wave
function and Moyal equation for the Wigner function [29] have not been considered until
now in the tomographic representation of quantum mechanics, while gauge invariance of the
Wigner—Moyal representation has been studied in sufficient detail [30-33].

Tomographic representation of quantum mechanics is completely equivalent to other well-
known representations. The main advantage of tomographic representation is a classical-like
appearance. In the absence of the electro-magnetic field, when considering the evolution of
particles in quantum scalar potentials the dynamical equation for tomograms in the classical
limit becomes the classical Liouville equation in the tomographic representation [28, 34]. But
in the presence of the electro-magnetic field the classical Liouville equation does not depend
on the field potentials and their gauge. Therefore, if the tomographic representation is posi-
tioned as a classical-like description, it is desirable that the quantum dynamical equation and
the function characterizing the quantum state would be independent on the gauge.

In such a context the aim of our paper is to explore the gauge properties of quantum tomo-
grams, including the star-product aspects, to introduce the gauge-independent tomograms,
and to obtain evolution equations of quantum states in gauge-independent tomographic
representations.

To begin with, let us recall how the gauge invariance of non-relativistic quantum mechanics
is realized in the wave function or density matrix representation, and give a reminder of the
basic formulae of conversion of the wave function and density matrix of a particle under the
gauge transformation of the potentials of the electro-magnetic field.

Consider the motion of a quantum particle having a spin in the electromagnetic field with
the vector potential A(q,#) and the scalar potential (q, ). As is known, the Hamiltonian of
such a system has the form [4]

A 1 (s e .V R
H=—|P——-A| +ep— KB, (D)
2m c
where P = —ih0/0q is a generalized momentum operator, m and e are mass and charge of

the particle, B = rotA is a magnetic field strength, & is an operator of quantum-mechanical
magnetic moment
K 5

k= —S§,
s 2)
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where s is a spin of the particle, § is a spin operator, and  is a constant characteristic of the
particle (the value of the intrinsic magnetic moment) that is the highest possible modulo value
k3 of projection of the magnetic moment on the g3 axis achieved with the projection of the
spin on this axis equal to s.

From the classical electrodynamics it is known that potentials of the field are defined only
up to the gauge transformation [1]

A— ATy g p L0 3)
c Ot

where Y is an arbitrary function of spatial coordinates and time.

Since the electric field intensity E and the magnetic field strength B are defined in terms of
the potentials as:

E = —gradp — lQA, B = rotA, 4)
c Ot

then the gauge transformation (3) does not affect the values of E and B. Therefore the part of
Hamiltonian (1) responsible for the interaction of the spin with the magnetic field is indepen-
dent of the gauge transformation.

The requirement of invariance of the Schrodinger equation under the gauge transformation
simultaneously with the gauge-independence of ‘probability density’ [¥|* leads us to the form
of the conversion of the wave function [4]:

U - exp(l—ex)\ll. (5)
ch

Accordingly, the conversions of the density matrix of the state and the Hamiltonian of the
system under the gauge transformation acquire the forms:

~ ie ). ie
b= exp(—x)p eXp(—X), (6)
ch ch
Ao 2 enf51) o
ch ch
and the von-Neumann equation is also invariant under transformations (3) and (6)
0 A 0 A
ih—p =[H, pl —» ih—p. =[H.p.]. 8
2" [H, p] 2 [H, fc] (3)

The paper is organized as follows. In section 2 we find transformations of ordinary quantum
tomograms in the general case in terms of the gauge-independent quantizer and dequanti-
zer operators. In section 3 we obtain the evolution equations for classical and quantum
particles in the classical electro-magnetic field in tomographic representations with gauge-
independent dequantizers, we discuss the gauge invariance of these equations and illus-
trate that the quantum tomographic equations do not be transformed to the corresponding
classical equations when / — 0. In section 4 we introduce gauge-independent optical and
symplectic quantum tomographic quasidistributions and derive evolution equations for such
representations. In section 5 we introduce and study the gauge-independent tomographic
probability representation and find the evolution equation for it. The conclusion is presented
in section 6.
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2. Gauge transformations of ordinary quantum tomograms

In the probability representation of quantum mechanics the states of the system are described
by probability distribution functions w(z, n, t) called quantum tomograms, where z is a set of
distribution variables, 7 is a set of parameters of corresponding tomography, and 7 is time.
According to the universal star-product scheme (see [26]), the tomograms are introduced as

the average values of dequantizer operators U (z,m),

w(z,n,1) = Tr{ pOU(z, )}, )

The inverse transformation is determined by the quantizer operator D(z, n)

p) = [ D mwiz.n.dzan. (10)
The von-Neumann equation in the tomographic representation has the form [34]:

0 2 PN N

5 @mn == [ (T AODE. O ndzdy. ()

It is easy to see that if we determine in definition (9) that the dequantizer and the quantizer are
gauge-independent, then equation (11) is invariant under the gauge transformation only with
the following transformation of tomograms:

Wz 1) = welz 1) = Tr {eXP(;—;x)ﬁ(t) GXP(—;—;x)U(z, n)}

=Tr {exp(l—;)() fﬁ(z’, n w7, t)dz’dn’exp(—%x)l}(z, 7))}.
C C

(12)
Introducing the notation for the kernel G(z, 71,2z, ")
I ie YW ie 8
G(z,n,z',n") = Trqexp| —x [P, n" ) exp| ——x |U(z,n) ¢, (13)
ch ch
for the gauge transformed function w,(z, 7, #) we obtain
we(z,m, 1) = f G(z,n, 2, n" w7/, t)dz'dn’. (14)

Thus, under the gauge transformation of the electromagnetic field potentials the tomogram of
the state is converted by means of integral transformation (14), in which the explicit form of
the kernel depends on the type of tomography.

If we have a spinless quantum particle with mass m in three-dimensional space, then the
dequantizer and the quantizer for the optical tomography have the form [35]

3 .
0W(X’ 0) = H 6(X0' - qu- Ccos 90' - éfs::llwe” )’ (15)
o=1 o
3 .
A h ka . A (o2
DX, 0) = f H # eXp{lkJ(X(, — §,cos 6, — P(,ﬂ)}(pk, (16)
o1 2Tmw, Mmwy

where P, are components of the generalized momentum operator and w, are constants that
have the dimension of frequency. Further, for simplicity we choose the set {w,} so that
W) =Wy = W3 = Ww.
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Substituting these expressions of the dequantizer and the quantizer to equation (13), after
some calculations using the formula for the matrix elements

(gl e@irttt|q ) = el +a25(q. — g, +b), (17)
we obtain

GW(X’ 0, X/9 0/)

1 ie kysing, hsing, k,sing, hsing,
=53 f expy — | X + Il — X — Ty
(4r2h)3 ch mw 2mw mw 2Vmw

3 . . o
< [T Imlexpdin, [P x, - x, 500 | _ .y, S0 = 90) gy . (18)
oy h sin 6, Jmwh

Further simplification of this expression is unfortunately only possible with the explicit
expression for the function Y.

For the spinless symplectic tomography the dequantizer and quantizer are given by the
formulae

3

X, pv) = [] 6o = Gty — Bo), (19)
o=1

A > mw mw A

Dy(X, p,v) = H o eXp{i, [ o Xo = oty — Pal/a)}, (20)
o=1

and from (13) we can obtain

GuX, p, v, X, V")

mw )’ ie Nmwh Nmwh
_(m) fexp 5 x| voko + 7 Vo | — x| ks — > vy

3 /
< I1 GXP{i,/% [kg(/w; — W)+ X, — Xgﬁ] }d3k. 1)
o=1 Vs

Note that the kernels G,, and Gy, are connected by the relation

Il iral Irsl sin 6,

(mw)?

G,(X,0,X,0") =

mw mw

: /
sin 6
GM(XU, cos 6, X ryco8 0,1, u )d3r.

Consider now the positive vector non-redundant tomography of the particle with spin
[36, 37]

wzn.0) = Tr{p( 0 n)}, (22)
where the trace is calculated also over spin indexes. In this representation the components of
the dequantizer and the quantizer are defined by formulae

Uiz 1) = Uz, 1) @ Uiy, Dunj(z,m) = D(z,1) @ @(nl)j’ (23)

where Z:{j(n;) and ﬁ(nl)j are the spin dequantizer and quantizer, j = 1, (2s + 1)? is the index
corresponding to the jth component of the vector tomogram w(z,n,t), and n,l =1, 2s + 1)
are the spin indexes. Since
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25+1 R R
>~ Dy Ujam = Oy (24)
nl=1
then, according to general formula (13), the kernel of the transformation of the vector tomo-
gram w(z, 7, t) takes the form:

Gy(z. .2\ ) = Tr{exp(%x)mz', n)®Dy exp(—%x)l?(z, m @ %}
C C
= 86 .21, (25)

i.e. the vector tomogram w(z, 7, t) under the gauge transformation is converted by components
through the integral transformation:

Wiz 1) = w0 = [Gan 2 W ndz'dy, 26)

where G(z,m,z',n’) is a kernel of the integral transformation for the spinless case. This
formula is valid for an arbitrary spin.

Thus we see that if the dequantizer is gauge-independent, then the tomogram is gauge-
dependent, and the evolution equation is gauge-invariant but gauge-dependent.

3. Gauge invariance of evolution equations

Let us consider in more detail the gauge invariance of the quantum evolution equations in
the tomographic representations with gauge-independent dequantizers and the question of
limiting transition of such equations to classics when 7 — 0. At first, we will get the Liouville
equation in the electro-magnetic field in the tomographic representations.

For the classical ensemble of non-interacting particles with mass m and charge e this equa-
tion in the phase space has the form:

0 0 1 0
—Walq, p, 1) + B—Wcl(q, p.1) + e(E(q, 1)+ —[p x B(q, t)])—Wcl(q, p.)=0, (27)
ot m 0q mc op

where p is a kinetic momentum, E(q, ) and B(q, #) are electric and magnetic fields, defined by
formulae (4), Wa(q, p, t) is a distribution function of non-interacting particles.

The distribution function Wy(q, p,?) is independent on the gauge transformation [1],
because the Liouville equation (27) includes only gauge-independent intensities of the electro-
magnetic field. Consequently, the optical and symplectic tomograms of the function Wy(q, p, t)
defined by the formulae (see [28] )

3 .
wa(x, 0,1) = ch](q, p.?) H 6(}@7 —q,cos 0, — pg%)d%] d&p, (28)
o=1
3
Ma(x, v, 1) = f Wa(a, p.0) [] 6Geo — 11,4, — vop,)dq &p, (29)
o=1

are also independent on the gauge transformation. We use the designation x instead of X for
the distribution variable to point out that the Radon transformations (28) and (29) are made in
the phase space with kinetic momentum p.
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Using the known correspondence rules [28, 35] between the operators acting on the Wigner
function [6] (or on the distribution function) and the operators acting on the optical or sym-
plectic tomograms

q,W(q,p) < —a;ja%M x, u,v) © (sin 006;618%4—)([, cos Og)w(x, 0),

BW@p) < —0.0,Mx pv) o mu(-cos,0; 0,+x,sin b, )w(x, ),
0, W, p) < 0 MX, p,v) < cost0,w(x,0),

OpW(q,p) < 1,0, M(X, 1, V) o 2 b, 0y w(X, 0),
mw
(30)
where we introduced the designation [35] for inverse derivatives
01 = sy [0 = 200 —f e, G1)
n—1)!

where ©(x, — x,) is a Heaviside step function, we can write the Liouville equation (27) in the
optical and the symplectic tomography representation

3

in 26;
Owa(x,0,1) = [w Z(cos2 6;00,— sz / {1 + xjaxj})

j=1

3
e . _ _ . .
+ — 2 EapyBA(sin 008x01890+ X, COS 0, t)(cos Gﬁax;@gdfxﬁ sin Hﬁ) sin 6,0y,
me o.54=1 ‘

3
_c Z Ej(sin 9(,8;”1890—1-3@, cos 0,,1) sin 9]-6)(,.] wa(x, 0,1), (32)
mw ;7

[t € : 1
atMcl(X7 M, v, t) = _au +— Z Ea{ifyB'y(*a;H 8/an t)(a;;aug)yaaxa

m me , 57

3
—e Y Ef(=0, 0y, 0y | Malx, p, v, 1), (33)
j=1

where €,4, is the completely antisymmetric pseudo-tensor of 3rd rank (the Levi-Civita
symbol).

Thus, we have gauge-independent equations (32) and (33) for gauge-independent classical
tomograms wg(X, 0, t) and My (X, p, v, t).

As is known, if we have the ensemble of non-interacting particles in the potential field,
the generalized momentum of the particle is equal to its kinetic momentum, and the quantum
analogue of the Liouville equation in this case is the Moyal equation [38] for the Wigner
function [6]

1 u u i
W(q,P,t :—f ( - -, —|——,t)ex (—uP)d3u, 34
(q.P,1) ) A5 at 5 Pl (34)
which is converted into the Liouville equation when 7 — 0.

In the electro-magnetic field when A = 0, the Moyal equation for the function (34) is writ-
ten as follows:
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0 P 0 2e in 0 e? i O
—W(q,P,t) =|———+ —1 +—— |+ ImA2 + =2 ¢
ot @hn [ moq h m@(q 2 ) mh (q 2 P )

T O P
mch 2 OP 2 0q

e ih O
+ —ReV,A + ——1||W(q,P,1). 35
o ReVy (q*q > P )] (q,P,1) (35)

The function W(q, P, ¢) is gauge-dependent, but if we take the classical limit # — 0 and change
variables p = P — “A in (35), then this equation will be converted into a gauge-independent
Liouville equation 227). However, there is no contradiction here, because in the gauge trans-
formation of the function W(g, p + “A)

Wc(q, p+ EA) = f W(q, p'+ EA) eXP{ iu(p -p) }
c c h
ie u u du dp’
x P{—h [X(q B 5) B X(q + 5) - “VX“D]} Qi)

we can spread out the function x(q £ u/2) up to the first order x(q = u/2) =~ x(q) + %uVX(q)

using a method of a stationary phase at # — 0. After that in the limit case we obtain
€ ! ¢ NA3H! e
Wc(q,p + —A) = f W(q,p + —A)é(p —pHdp’ = W(q, p+ —A),
c ¢ c

that is the function W(q, p + EA becomes gauge-independent.

Let us transform the Moyal equation (35) to the optical and symplectic tomographic repre-
sentations, in which the tomograms w(X, 8, ) and M (X, w, v, t) are defined from the Wigner
function W(q, P, ¢) with the same formulae (28) and (29), where the kinetic momentum p
should be replaced by the generalized momentum P, and the variable x should be replaced by
X to point out that the Radon transformations are being done in the phase space with general-
ized momentum. For this purpose we should use the same correspondence rules as (30). After
calculations we can write the evolution equation for gauge-dependent optical tomogram as
follows:

3
ow (X,0,1) = [cu z:(cos2 (91-891.—% sin 29,-{ 1 + X0y, }) + % Im [J],,
=1
2
+

~ 2e ~ A e
AR — 2 Im([AL[P],) + - Re[V,A ] X, 0,1),
—5 AL = —— Im([ALL[Pl,) + —Re[ VA, |w(X.6.0.  (36)

where

(A7) = Ai((@)w. O, [£e = @@l D). [VeAl, = YeA(q = [l 1),
and [q],,, [P],, are position and generalized momentum operators in the optical tomographic

representation [35],

. _ . hsin 6,
[4,]w = sin 908(%8)(”' + X, cos0, +1i 251n

Ox,, (37)
mw
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(B, = mw(— cos 0(,3};390 + X, sin 9(,) — % cos 6,0y, (38)
For the gauge-dependent symplectic tomogram we can write

62

2 A
81‘M(X’ MV, t) = I:ﬁav + ?e Im [@]M + Fl Im[A]121/1
m

mcz

2e A A e
— EII’H([A]M[P]M) + %Re[VqA]M]M(X, n,v,t), 39)

where

Ay = A& 0, [Pl = ol 1), [VgAlyw = VA(q = [@lu, 1),

and [q]us, [P]y are position and generalized momentum operators in the symplectic representa-
tion (see [28]),

(Bl = — 0% 0,,—i(hI2)p,0x,. [4,)u = —0x 0, +i(hI2),0x,. (40)

Equations (36) and (39) are gauge-invariant only under the condition of transformation of
tomograms with general formula (14) with the kernel G(z,7,z’,n") defined by the formula
(18) or (21). In the classical limit # — O these equations, in the general case, are not con-
verted into equations (32) and (33). The thing is that (32) and (36) are equations for distri-
bution functions of different observables: x,(6,) = g, cos 8, + p, sin §, in the classical case
(32); but X,(6,) = g, cos 0, + B,sin 6, in the quantum case (36). Analogously, (33) and (39)
are equations for distribution functions of different observables x,(u,, 1) = q,1t, + p, v and
Xg(ug, V) = g, + f,’,ug respectively.

4. Gauge-independent tomographic quasiprobability representations

In the previous section we have shown that the evolution equations in the tomographic repre-
sentations for the gauge-dependent tomograms in the classical limit # — 0 are not converted
to the Liouville equation in the tomographic forms for gauge-independent tomograms of the
classical distribution function.

Therefore, for the construction of quantum tomographic representations, in which the
evolution equations would have been transformed to (32) and (33) when # — 0, we need to
introduce gauge-independent quantum tomograms. This can be done with the help of the
gauge-independent Wigner function obtained in [29],

1 i e 12 u u
W s 9l sy - +_ d A + 7t ( PNE] +_9 t)d3 ’
«(q, P, 1) iy f CXp( hu{p " i 597 (@+ 7u )})p -5, a4+ u

(41)
where p is a kinetic momentum.
The gauge-independent Moyal equation for this function has the form [30]:
1 . - 1 L =
{a, TP+ AP)Dq + e(E +—— [+ 4p) x Bl )5p}Wg(q, p.1) =0, (42)

where
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. 1/2 9 . 12 9
E= [ arB{a+inr—— | B= [ arBla+inr_— 1|
( op ) -172 ( op )
This equation in the classical limit 7z — 0 is converted into the Liouville equation (27).

If we apply Radon transformations (28) and (29) to the Wigner function (41), we obtain
gauge-independent optical wy(x, 8,1) and symplectic M,(x, p, v, ) tomograms. Under such
definitions the correspondence rules between operators acting on the tomograms and the
Wigner function will be similar to the correspondence rules (30). Then, from equation (42) we
find the evolution equation for the gauge-independent optical tomogram wy(x, 6, ¢):

3
Owe(x,0,1) = [w Z(cos2 009, — % sin 20;{1 + x;0,;}

i 3
- 9 X0 0 Xi
g [Apa] cos 0,0y, g [ ] sin 6,0 ,)

3
+ £ Eaf fw[B ] (cos 030, 63} xgsin 3 — [Apﬂ] )sin 6, 6xtl]wg(x 0,1),

mc a, 5 =1
(43)
where

= Z Eay SiN O30y,

[Apa]wz _mcw i Gt

172 . . inT .
X f dr TBW(SIH 0,0, 0y, + x,cos O, + — sin 6,0, t),
~12 i mw

. 172 ,1 AT
[E], = f dr E(sin 0,0, 09, + x5 €08 Oy + — sin 0,0, t),

—1/2 mw

. 12 ihT
[B]w:f dr B|sin 6,0, 89 + x, cos 6, —|——sm0 Ot |
12

mw
For symplectic tomogram M,(X, pt, v, t) we obtain

3
(8Bl 1,0v Z[E 1105

OM, (x, v, r)—[ 9, — -
m

3
+£ % carn| B4 ], (8;318,47—[AﬁS]M)V(ﬁxn]Mg(X, W, 1), (44)

me , 8.y=1

where

1/2
(2B, = ——~ Z a0, | AT TB(—0.'0, +ihT1,05,.1),
ci By=1 —1/2

10
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. 12
[Ely = dr E(_axalaﬂa +ihT1;0y,, t),
1/2

5 12
(Bly = f dr B(axnlal,w +ihT,0,, t).
—1/2

As it should be, equations (43) and (44) in the classical limit # — 0 are converted into the
equations (32) and (33).
Combining formulae (29) and (41) we can write

Mo ) = [ (@Il O, )| @) &'
where we introduce the designation for the matrix element of the corresponding dequantizer

1,4, + 4q,)

2u,
+ £ f " ( 9 g - q))] } (45)
1/2

From (45) we can see that UMg(x, 1, v)is Hermitian and non-negative operator, consequently,
the tomogram M,(X, u, 1) is real and non-negative.
From the structure of the matrix element (45) and the fact that the components of the

17T _ 1 l ! _ Yo _
(d|Un,(x, p,v)|q) = o h)3 H\al exp{ (9, qg)[%

kinetic momentum operator p = P EA((]) do not commute, it is possible to guess that the
explicit expression for the dequantizer (7Mg looks like

exp{ Z ko [x(, 1,4, — vb + VUSAU(Q, t)] } (46)

3k

0Mg(XvH’V):f(;l )3

Indeed, calculation of the matrix element of operator (46) gives the result (45).
Formula (46) permits determining the corresponding quantizer as follows:

3 3
Dy(x, p,v) = (%) expi [ > [xa — 1,0, — P + 1, 5A, @, t)] : (47)
2m /A — c

We can see that the dequantizer and the quantizer are gauge-invariant in the sense of transfor-
mation of type (7).
After calculations for the matrix element of (47) we obtain

. 3 i 12 /
(a|Du,(x, p,v)|q) = (%) eXp{;—;(q -q) [ 0 dTA(q ; 14 r(a- q’))}

2

3
X 6((1 —q - m/mwh)exp {ip, [V% —q %]} I exp{ixg % } (48)
o=1

Using formulae (45) and (48) it is possible to check up that

[ (@l O 11,0 X Do, 1, )| @) e o = 6(a, — a)o(a; — @)

1
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It is obvious that the corresponding dequantizer and the quantizer for optical tomogram
we(X, 0, 1) are related with (46) and (47) as follows:

U, (x,0) = 0Mg(xm ft, = 08 by, vy = %),
mw

. k| k| |k / /
D, (x,0) = f| lll 2l | 3| ( Xo fby = ko cos@U, v, =k, h_sinb ]dgk

Due to the fact that the components of the operator X(€) as well as X(u, ) do not commute,
the tomographic representations constructed in this section are not probability representations,
but are non-negative, normalized, and gauge-independent quasi-probability tomographic
representations.

5. Gauge-independent probability representation

Unfortunately, the gauge-independent tomographic functions introduced in the previous sec-
tion My(x, i1, v, 1) and wy(X, 0, t) are not distribution functions of any physical observable. To
make up for this shortcoming, we introduce the tomographic function 9%(x, , v, t) as the fol-
lowing map of the gauge-independent Wigner function:

M, o, v, 1) = f Wy(q. p. )(x — puq — vp)dg dp. (49)

Such a map was applied for the construction of center of mass tomography [39].

It is evident that 9(x, p, v,¢) is a distribution function of the physical observable
X(p, v) = pq + vp, which is a scalar product of two 6-dimensional vectors (u, v) and (q, p).
The quantity 9(x, p, v, t)dx is the probability to have the value of the scalar operator X(u, )
within the interval between x and x + dx at fixed time ¢ and fixed vector (p, v).

The map inverse to (49) has, obviously, the form:

3
Wy(q,p, 1) = (4’:—2“;_!) f?)ﬁ(x, TR exp{i % (x — pq — l/p)}dx Pud. (50)

Combining formulae (49) and (41) we obtain the expression for the matrix element of the
dequantizer operator Upy(x, u, v/) for this representation

1
27Th‘l/3|

/2 2 12 2 /2 2
43 q3 9 — 49 9 — 49 93 — 45
X ex — — —
p{ hl V3 1 21/1 H2 21/2 Hs 21/3 ]}
x eXp{—(q 9 f dTA( 9+ . 44 (g - q))} (51)

Taking into account expressions of dequantizer operators in the previous sections and the
matrix element (51) we can write the explicit expression for the gauge-invariant dequantizer

Upn(x, p, v)

(q| Unn(x, p,v)|q) =

N—

5(ﬂ(q§ —q3) — (g, — ql))é(ﬂ(qg —q3) — (@ — @)
v V3

12
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. dk . A A N
O ) = [T exp {1/« [x — g — P + qu(q)] } (52)

Then the quantizer Dyy(x, i, V), obviously, equals

3
Don(x, m,v) = (’Z—:) exp {i % [x — pq— vP + EI/A((])] }, (53)

and the calculation of its matrix element gives rise to the following:

R 3 H 1/2 /
(q|Don(x, i, v)|q') = (ﬂ) exp {1—e(q -q) f dTA( 1+9 . T(q — q’))}
ch 12 2

2T

xé(q_q/_y\/mwh]exp{iu[u%—q /%]—I—ix /%} (54)

The correspondence rules (30) for representation 9(x, i, v) acquire a slightly modernized
form
4, W@, p) & —0,'0, M(x, p,v),
P W@, p) < —3;'0,IM(x, p,v),
94, We(q. p) < 11,0M(x, p, V),
9p,We(q, p) © 10M(x, p, 1),

(55)

With the help of (55) equation (42) is transformed to the evolution equation for the tomogram
m

EN 3
O, Mx, w, v, 1) = [%8,, - > [Apa]m 1,0 — e ;[Ej]m V0,

a=1

3
+-< > sagy[ﬁv]m [@3 — [Af’@]m 8X]V{,]9ﬁ(x, n,v,t), (56)

mc a,fB,y=1

where

S 12 B )
[Af’u]M = *ET Z Eaml/g&cf dr 7B (-0, 16;,,0+1h71/(,8x,t),
cigzy ~1/2

. 12 o .
Ely = f]/z dr E(—BX Oy, + k1,0, t),

- 1/2
Bly = f dr B(—a;‘a% T ikT1,0,, r).
—1/2

In the limit case # — 0 we get the classical equation

13
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3
e _
DM, v, t) = | L0, + 5 S s By (=079, D,
n € apoy=1

3
— e Y E(=0,'0,,, 0 | Max, p v, 1), (57)

Jj=1

which is the Liouville equation in the corresponding representation. Thus, we have con-
structed the gauge-independent probability representation which has a clear physical meaning
and the classical limit.

The density matrix p(q, ¢/, ) depends on time and on six spatial variables, while the tomo-
gram M (x, p, v, t) depends on time, on one spatial variable, and on six tomography param-
eters. But the number of these parameters can be reduced by one if we take into account that
the tomogram M(x, p, v, t) is a homogeneous function in the sense

M(rx, r, 10, 1) = |r[19M(x, p, v, ).

Therefore, in the 6-dimensional space (u, ) = (u, mwr) one can, for instance, pass to the
unit sphere and reduce the number of variables introducing the new tomogram tu(x, &,¢) as
follows:

4¢3)

w60 = 3,19 2 1) = [wa (v - m@a - o€ L frgan oo

where £ is a 5-dimensional vector of directional angles in the 6-dimensional space and

SR INSRIND) sin &; sin &, sin &3 8in ; sin &5
(SRS IND) cos & sin &, sin &38in ; sin s

(#(5)) _ 13(&2, &30 €40 €s) I &, 8in &ssin §ysin & . (59)
(&) vi1(€3, €45 E5) cos &;sin &, sin &5

V(€45 &5) cos &, sin &

v3(&s) cos &5

In the physical meaning to(x, &, t)dx is the probability of the system to have the projection of
the vector (q, p/mw) on the direction of the unit vector (59) within the interval between x and
X+ dx.

The inverse transformation r(x, &, 1) = W,(q, p, 1) has, obviously, the form:

Wy(q, p, 1) = (4m’mw)~> f r(x, &, 1) exp {ir(x - g - D(é)L)}
mw
x r¥sin &, sin® &;sin® &, sin* & dx dr d3¢. (60)

So, the tomogram tv(x, &, t) also contains all available information about the state of the sys-
tem under study, but it depends on the same number of variables as the density matrix, and it
is gauge-independent.

For the function to(x, &, 1) it is also possible to write the evolution equation, and it is possi-
ble to reduce the number of variables of 91(x, p, v, ) by a more symmetrical method different
from (58) and (59), but it may be the subject of future publications.

14
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6. Conclusion

In conclusion, we point out that the evolution equation of a tomogram of the state of quantum
system, as well as the appropriate Moyal equation, possess a gauge invariance. However the
optical and symplectic tomograms in their determination with the help of gauge-indepen-
dent dequantizers (15) and (19) do not possess the gauge independence and are converted by
the integral transformation (14) with the kernel of type (13) dependent on the quantizer and
dequantizer operators, and the gauge function Y.

Contrary to the quantum case, optical and symplectic tomograms of classical distribu-
tion function in the phase space with kinetic momentum possess of the gauge independence.
Therefore, in the electro-magnetic field the evolution equations (36) and (39) for gauge-inde-
pendent tomograms do not have the classical limit (32) and (33) when 7 — 0. This quality dif-
fers from the quality of the Moyal equation, which is gauge-dependent but, nevertheless, has
the gauge-independent Liouville equation as the classical limit.

To solve this problem we introduced the gauge-independent optical and symplectic tomo-
graphic quasi-distributions and tomographic probability distributions, and obtained their
gauge-independent evolution equations, which are converted in the classical limit to the
Liouville equation in corresponding tomographic representations.

We pointed out that the motivation to study the gauge invariance in tomographic prob-
ability representation is closely related with studies of gauge invariance in Wigner-Weyl
representation. We have shown that gauge-independent tomograms can be constructed and
corresponding quantum evolution equations can be obtained.
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