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Abstract
A new type of tomogram, squeeze tomograms, of quantum states of light, is
introduced, which is based on measuring photon statistics after the action of a
squeeze operator on the states’ density matrix. The introduced tomograms are
photon number probability functions depending on two real parameters which
are a scaling factor and a rotation angle. The rotation angle and scaling factor
label the reference frame in the phase space of field quadratures in which the
photon statistics is measured. The expressions of the squeeze tomogram in
terms of the Wigner function and density matrix in quadrature representation
are obtained. The examples of squeezed states, even and odd coherent states
and thermal states are considered in detail. The multimode generalization is
discussed.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Wj, 42.50.Ar, 42.50.Dv

1. Introduction

The quantum states are described either by wavefunctions [1] (pure states) or by a density
matrix [2, 3]. The attempts to find a description of the quantum states which more closely
resembles the classical picture gave rise to the quasidistribution functions in phase space
of field quadratures such as the Wigner function [4], Sudarshan–Glauber P-function [5, 6]
and Husimi Q-function [7]. Recently it was understood that the states can be associated
with the standard probability distribution functions. This understanding emerged when the
relation between the marginal distribution function for photon homodyne quadrature (optical
tomogram) and the Wigner function was found [8, 9].

Optical tomography of quantum states was used to measure the quantum states of
squeezed light [10, 11]. The optical tomograms depending on a rotation angle parameter
were generalized [12–14] to the case of symplectic tomograms of quantum states, which
depend on a field quadrature and two additional real parameters. The symplectic tomograms
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are probability distribution functions for a field quadrature measured in a scaled and rotated
reference frame of quadrature phase space. The symplectic and optical tomograms depend
on random continuous variables (homodyne quadrature components). There exists another
tomographic scheme to measure the quantum states. This scheme uses probability distributions
of discrete random variable n = 0, 1, 2, . . . , which has the physical meaning of number of
photons. Photon number tomography was introduced in [15–17]. The electromagnetic field
amplitude of the initial quantum state of light in photon number tomography is shifted by an
arbitrary amount α = α1 + iα2. The photon number distribution function measured after the
shifting contains complete information on the initial quantum state of the photon. Another
tomographic scheme, which uses a discrete random variable for measuring quantum states, is
based on spin tomography [18–21]. In spin tomography the discrete random variable is the
spin projection m,−j < m < j , i.e., the random variable changes in a finite domain.

In the standard theory of quantum states, there exist different representations, e.g., position
representation, momentum representation, energy representation. The pure state is described
by a state vector in Hilbert space but the choice of a specific basis in the Hilbert space for
representing the state vector in terms of its components with respect to the chosen basis
determines the concrete representation. One can choose, for example, the discrete basis of
Fock states. Also one can choose the continuous basis of coherent states. All the different
basis vectors are connected by some linear transform. The description of mixed quantum states
is given in terms of a density operator. For the density operator, one can also use different
basis vectors to construct the density matrix. In all cases, the study of different representations
(different basis vectors and corresponding linear transforms) is important to clarify different
aspects of the quantum states. An analogous situation is seen in the tomographic approach
to the description of quantum states. In the description of quantum states the wavefunctions
corresponding to different representations are connected by some integral transforms, e.g.,
by Fourier transform as in the case of position and momentum representations. Although
all the representations contain equivalent information, one uses the specific one (like using
the position representation) which is most appropriate for a given problem. Due to this,
it is useful to find different representations and to study their properties; the same is true
in the tomographic approach. The motivation is to study different possibilities to associate
with quantum states the probability-distribution functions. Quasidistribution functions such
as the Husimi Q-function or the Wigner function are associated with so-called symbols of
density operators. The symbols of arbitrary operators are functions which are in one-to-one
correspondence with the operators. To reproduce properties of the associative product of
operators, the symbols of operators have a nonstandard product. This product (called the
star-product) is associative but, in general, noncommutative. Tomograms (or tomographic
symbols) are a particular case of star-product quantization.

The aim of our paper is to introduce a new tomographic representation which we called
‘squeeze tomography’ and to study the relation of the squeeze tomograms to symplectic
tomograms, the Wigner function and density matrix in the position representation. The
squeeze tomogram uses the discrete random variable n = 0, 1, 2, . . . , which is the photon
number analogous to the case of photon-number tomography. But instead of using the shift
of the photon amplitude, squeeze tomography is based on scaling the photon amplitude.

The paper is organized as follows. In section 2 we review symplectic tomography and
optical tomography schemes. In section 3 we review the Wigner function and the density
matrix in the position representation. In section 4 we introduce squeeze tomography and
study the connections of squeeze tomograms with the Wigner functions, optical and symplectic
tomograms and the density matrix in the position representation. The examples of the squeeze
tomograms for the coherent states [6], even and odd coherent states [22], thermal states and
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squeezed states [23, 24] are considered in section 5. The extension of the scheme to the
multimode electromagnetic field is discussed in section 6. Perspectives and conclusion are
given in section 7.

2. Symplectic and optical tomograms

The state of a quantum system is described by a Hermitian density operator �̂ which satisfies

Tr �̂ = 1, (1)

and has the property of nonnegativity

�n � 0, (2)

where �n are the eigenvalues of the density operator �̂. For a pure state, the density operator
is a projector, i.e.,

�̂2 = �̂. (3)

For continuous variables (position or field quadrature) one can introduce the optical
tomographic probability distribution [8–10]

Wopt(X, θ) = 〈δ (X − cos θq̂ − sin θp̂)〉. (4)

This positive probability distribution, called an optical tomogram, is normalized for a
normalized quantum state, i.e.,∫ ∞

−∞
dXWopt(X, θ) = 1. (5)

It is important that the optical tomogram contains the same information about the states as
the density operator does. The optical tomogram determines the quantum state completely.
It can be considered as particular characteristics of the state analogous to the density matrix
in position representation. The optical tomogram can be extended to become the symplectic
tomogram

Wsym(X,µ, ν) = 〈δ(X − µq̂ − νp̂)〉. (6)

Here µ and ν are real numbers. The random variable X can be treated as the position (field
quadrature) measured in the scaled and rotated reference frame of phase space. The symplectic
tomogram also determines the quantum state completely. It can be used as characteristics of
the state instead of the density matrix in the position (or other) representation. The Dirac
δ-function is defined by its Fourier decomposition as

δ(X − µq̂ − νp̂) = 1

2π

∫
dk eik(X−µq̂−νp̂).

The parameters λ and θ , where

µ = eλ cos θ, ν = e−λ sin θ, (7)

describe scaling and rotation, respectively. Equation (6) can be rewritten using the expression
for the Wigner quasidistribution function of the state W(q, p) [4]

Wsym(X,µ, ν) =
∫

dq dp

2π
W(q, p) δ(X − µq − νp). (8)

This expression has the inverse

W(q, p) =
∫

dX dµ dν

2π
ei(X−µ q−νp)Wsym(X,µ, ν). (9)
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The density operator �̂ can be expressed in terms of the symplectic tomogram Wsym(X,µ, ν)

as [13]

�̂ = 1

2π

∫
dX dµ dν ei(X−µq̂−νp̂)Wsym(X,µ, ν). (10)

The optical tomogram can be related to the Wigner function

Wopt(X, θ) =
∫

dq dp

2π
W(q, p) δ(X − cos θq − sin θp). (11)

According to [9], the inversion formula can be written in terms of the Radon transform

W(q, p) = 1

4

∫ ∞

−∞

∫ ∞

−∞

∫ π

0
dη dX dθ |η| eiη(X−q cos θ−p sin θ)Wopt(X, θ). (12)

The integrations must be understood in the sense of generalized functions [24]. Thus, we
obtained that both the optical tomogram and the symplectic tomogram can be used for a
description of quantum states analogously to how the Wigner function is used.

3. Wigner function properties

The Wigner function is connected with the density matrix in the position representation

W(q, p) =
∫

du e−ipu�
(
q +

u

2
, q − u

2

)
, (13)

with the inverse relation

�(x, x ′) = 〈x|�̂|x ′〉 = 1

2π

∫
dp eip(x−x ′)W

(
x + x ′

2
, p

)
. (14)

Usually the Wigner function is considered as the appropriate function to describe the quantum
state. But the symplectic tomogram as well as the optical one can also be associated with the
quantum state since they contain the equivalent information which is in the Wigner function
or density matrix. The Wigner function provides marginal distribution functions

P(q) =
∫

dp

2π
W(q, p), (15)

P(p) =
∫

dq

2π
W(q, p). (16)

In equations (15) and (16), P(q) and P(p) are the position and momentum probability
densities, respectively. One can rewrite equation (15) in the form∫

dp

2π
W(q, p) = �(q, q), (17)

where �(q, q) is the diagonal element of the density matrix in position representation. In view
of equations (15) and (16), the Wigner function is similar to the positive probability distribution
on the phase space of a classical system. But the Wigner function can take negative values too.
It means that the Wigner function cannot be interpreted as a standard probability distribution
on the phase space. Thus if one wants to associate with the quantum state a fair probability
distribution, one can use the optical Wopt(X, θ) and symplectic Wsym(X,µ, ν) tomograms,
which provide examples of probability densities of the field quadrature component X either
in a rotated reference frame (optical tomogram) or in a rotated and scaled reference frame
(symplectic case).
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4. Squeeze tomograms

In this section we introduce another type of tomogram which we call the squeeze tomogram
Wsq(n, µ, ν). Here n = 0, 1, 2, . . . has the physical meaning of the number of photons in
the quantum state of light under consideration. We define the tomogram of the state with the
density operator �̂ by the relation

Wsq(n, µ, ν) = 〈n|Ŝ(µ, ν) �̂Ŝ†(µ, ν)|n〉
= 〈n|Ŝ(λ)R̂(θ) �̂R̂†(θ)Ŝ†(λ)|n〉. (18)

Here Ŝ(µ, ν) = Ŝ(λ)R̂(θ), where Ŝ(λ) and R̂(θ) are the squeeze and rotation operators,
respectively. They have the form

Ŝ(λ) = exp

[
iλ

2
(q̂p̂ + p̂q̂)

]
, (19)

R̂(θ) = exp

[
iθ

2
(q̂2 + p̂2)

]
. (20)

The scaling parameter λ and rotation angle θ are connected with the symplectic transform
parameters µ and ν by equation (7).

The squeeze tomogram can be interpreted as the diagonal matrix element in a Fock basis
of the scaled and rotated density operator

�̂µν = Ŝ(µ, ν)�̂Ŝ†(µ, ν). (21)

Since the squeezing and rotation are unitary operators the Hermitian nonnegative density
operator �̂µν has positive diagonal matrix elements in the Fock basis. These matrix elements
(tomograms) have the physical meaning of photon distribution functions in the state described
by the density operator �̂µν . To measure the tomogram one has to take the initial photon state
with the density operator �̂. Then one needs to rotate the quadratures as is done in the homodyne
detection scheme. The rotated state has to be squeezed by applying the squeezing operator
Ŝ†(λ). Measuring the photon statistics in the obtained state with the density operator �̂µν ,
one gets the squeeze tomogram Wsq(n, µ, ν). This tomogram is the normalized probability
distribution of the discrete random variable n. The tomogram is normalized, satisfying the
equality

∞∑
n=0

Wsq(n, µ, ν) = 1. (22)

The tomogram depends on the number of photons n and two real parameters µ and ν. The
number of parameters is sufficient to characterize the quantum state completely since it is
determined by the Wigner function depending on two real variables q and p.

4.1. Squeeze tomogram and density operator

Let us find the connection of the introduced squeeze tomogram with other characteristics
of photon quantum states, e.g., with the density operator (density matrix) in the position
representation. This connection can be presented in the form of an integral transform of the
density matrix

Wsq(n, µ, ν) ≡ Wsq(n, λ, θ)

=
∫

dx dy �(x, y)K(x, y, n, µ, ν). (23)
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The kernel of the integral transform has the form

K(x, y, n, µ, ν) = 1√
π(µ2 + ν2)2nn!

Hn

(
x√

µ2 + ν2

)
Hn

(
y√

µ2 + ν2

)

× exp

{
−i

x2

2

[ √
2

1 −
√

1 − 4µ2ν2
− µ + iν

ν(µ2 + ν2)

]

+ i
y2

2

[ √
2

1 −
√

1 − 4µ2ν2
− µ − iν

ν(µ2 + ν2)

]}
, (24)

where Hn denotes the Hermite polynomial of order n. The derivation of this formula is given
in appendix A.

4.2. Squeeze tomogram and Wigner function

One can find the relation of the squeeze tomogram to the Wigner function. To do this we
express the density matrix in terms of the Wigner function using equations (13), (14) (see
details in appendix B). The connection of the squeeze tomogram with the Wigner function can
be presented in the integral form

Wsq(n, µ, ν) =
∫

dq dpW(q, p)KW(q, p, n, µ, ν). (25)

The kernel of the integral transform has the form

KW(q, p, n, µ, ν) = (−1)n

π
exp(−|z|2/2)Ln(|z|2), (26)

with

|z|2 = 2q2

µ2 + ν2
+ 2(µ2 + ν2)

[
p −

( √
2

1 −
√

1 − 4µ2ν2
− µ

ν(µ2 + ν2)

)
q

]2

. (27)

For ν = 1, µ = 0 (or θ = π/2, λ = 0), which means that there is no squeezing, and a
π/2 rotation, the obtained kernel coincides with the Wigner function of the Fock state (given
in [27]).

4.3. Squeeze tomogram and symplectic tomogram

The symplectic tomograms can be written within the framework of the star-product
quantization [28]. Then it is associated with the set of operators

Û (�x) = δ(X − Ŝ†(µ, ν) q̂Ŝ(µ, ν)), (28)

D̂(�x) = 1

2π
exp{i (X − µq̂ − νp̂)}, (29)

with �x = (X,µ, ν). The symplectic tomogram is the tomographic symbol of the density
operator and it is given by

W(�x) = f�̂(�x) = Tr{�̂Û (�x)},
and the density operator,

�̂ =
∫

dX dµ dνW�̂(X,µ, ν)D̂(X,µ, ν).
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As we mentioned in the introduction, the tomographic symbol of the operator is the function,
which represents all the properties of the operator. Suppose that there is another mapping
described by the vector �y = (n, µ′, ν ′), and sets of operators Û ′(�y) and D̂′(�y) such that the
squeeze tomogram is another tomographic symbol of the density operator

W(�y) = φ�̂(�y) = Tr{�̂Û ′(�y)},
and the inverse relation

�̂ =
∑

n

∫
dµ′ dν ′ W�̂(n, µ′, ν ′)D̂′(n, µ′, ν ′).

The operator Û ′(n, µ′, ν ′) is given by the expression

Û ′(n, µ′, ν ′) = δ(n − Ŝ†(µ′, ν ′)â†âŜ(µ′, ν ′)), (30)

where â†, â are boson creation and annihilation operators. The expression for D̂(n, µ′, ν ′) is
under current research.

Two different symbols of the same operator can be related through the expression

φA(�y) =
∫

d�xfA(�x) Tr{D̂(�x)Û ′(�y)}.

Therefore

Wsq(n, µ′, ν ′) =
∫

dX dµ dν Wsym(X,µ, ν)KS(n, µ′, ν ′, X,µ, ν) (31)

where the transformation kernel is given by

KS(n, µ′, ν ′, X,µ, ν) = Tr

{
1

2π
exp[i(X − µq̂ − νp̂)] δ(n − Ŝ†(µ′, ν ′)â†âŜ(µ′, ν ′))

}
.

(32)

Substituting the expressions

δ(n − Ŝ†(µ′, ν ′) â†âŜ(µ′, ν ′)) = Ŝ†(µ′, ν ′) δ(n − â†â) Ŝ(µ′, ν ′) (33)

and

Ŝ(µ, ν)q̂Ŝ†(µ, ν) = µq̂ + νp̂ (34)

into the equation for the transformation kernel, we can establish that

KS(n, µ′, ν ′, X,µ, ν)

= Tr

{
1

2π
Ŝ(µ, ν) exp(X − q̂) Ŝ†(µ, ν) Ŝ†(µ′, ν ′)δ(n − â†â)Ŝ(µ′, ν ′)

}

= 1

2π
〈n|Ŝ(µ̃, ν̃) exp(X − q̂) Ŝ†(µ̃, ν̃)|n〉, (35)

where

Ŝ(µ̃, ν̃) = Ŝ(µ′, ν ′)Ŝ(µ, ν)

denotes the product of two elements of the two-dimensional symplectic group, i.e.,

µ̃ = − ν ′

2ν

(
1 −

√
1 − 4µ2ν2

)
+ µ′µ, (36)

ν̃ = ν ′

2µ

(
1 +

√
1 − 4µ2ν2

)
+ µ′ν. (37)
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By means of expression (34) and

−i(µ̃q + ν̃p) ≡ αâ† − α∗â,

we find that

KS(n, µ′, ν ′, X,µ, ν) = 1

2π
eiX〈n|D(α)|n〉,

where D(α) = exp(αâ† − α∗â) is the displacement operator. The expansion of the diagonal
matrix elements of the displacement operator in the Fock basis is given by [27]

〈n|D(α)|n〉 = e−|α|2/2Ln(|α|2),
with |α|2 = (µ̃2 + ν̃2)/2. Therefore the distribution function of the discrete random variable
n can be related to the symplectic tomogram, which is the probability density distribution of
continuous random variable X. This relation reads

Wsq(n, µ′, ν ′) =
∫

dX dµ dν Wsym(X,µ, ν)KS(n, µ′, ν ′, X,µ, ν). (38)

The kernel has the form

KS(n, µ′, ν ′, X,µ, ν) = eiX

2π
e−|α|2/2Ln(|α|2). (39)

Here Ln is a Laguerre polynomial and the complex variable α reads

α = 1√
2
(ν̃ − iµ̃), (40)

where µ̃ and ν̃ are given by equations (36) and (37).

4.4. Squeeze tomogram and optical tomogram

One can relate the squeeze tomogram Wsq(n, µ, ν) to the optical tomogram Wopt(X, θ). To
do this one can use the expression obtained above, equation (38), which connects the squeeze
tomogram with the symplectic one. Now we relate the symplectic tomogram to the optical
one [29]. In fact, one has

Wopt(X, θ) = Wsym(X, cos θ, sin θ). (41)

In view of this, the Fourier decomposition of the optical tomogram can be used to find the
symplectic one. In the expresssion

Wopt(X, θ) = C0(X) +
∞∑

n=1

(Cn(X) einθ + C−n(X) e−inθ ), (42)

where for arbitrary n the coefficients read

Cn(X) = 1

2π

∫ 2π

0
dθ Wopt(X, θ) e−inθ , (43)

one has the symplectic tomogram by means of the substitutions

cos θ → µ, sin θ → ν,

or, in more convenient form,

einθ → (µ + iν)n, e−inθ → (µ − iν)n. (44)
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Figure 1. Squeeze tomogram of the vacuum state, which is different from zero only for an even
number of photons. Of course, the number of photon is discrete, however, in figures 1–4 it is
considered as a continuous label because it makes the figures look nicer.

Thus, one has

Wsym(X,µ, ν) = 1

2π

∫ 2π

0
dθ ′

[ ∞∑
n=1

(µ + iν)n e−inθ ′Wopt(X, θ ′)

+
∞∑

n=1

(µ − iν)n einθ ′Wopt(X, θ ′) + Wopt(X, θ ′)

]
. (45)

Due to scaling transform, there exists another form of the connection of the optical and
symplectic tomograms

Wsym(X,µ, ν) = 1√
µ2 + ν2

Wopt

(
X√

µ2 + ν2
, arctan

ν

µ

)
.

Substituting this expression of the symplectic tomogram into equation (38), we get the explicit
relation of the optical tomogram and squeeze tomogram.

5. Examples

In this section we consider several examples of squeeze tomograms of important states of
photons. The first example is the ground or vacuum state of the electromagnetic field with
density operator

�̂v = |0〉〈0|. (46)

The squeeze tomogram of this state reads

W0(n, λ, θ) = |〈n|Ŝ(λ)|0〉|2, (47)

where Ŝ(λ) is the unitary squeezing operator. The tomogram in explicit form reads

W0(n, λ, θ) = (−tanh λ)n

n!2n cosh λ
{Hn(0)}2 . (48)

One can see that the angle θ is not present in the tomogram for the vacuum state. In figure 1
we display the squeeze tomogram of the vacuum state, which is symmetric in the parameter λ

and goes to zero when the even number of photons increases.
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Figure 2. Squeeze tomogram of a coherent state. We used the parameters α = 1 and θ = 0,
which characterize a non-rotated phase space frame. For λ → 0 the tomogram is a photon number
Poisson distribution.

Another important state is the coherent state |α〉 of the photon with the density operator

�̂α = |α〉〈α|. (49)

According to definition, the squeeze tomogram for this state reads

Wα(n, λ, θ) = |〈n|Ŝ(λ)R̂(θ)|α〉|2. (50)

One can easily show that

〈n|Ŝ(λ)R̂(θ)|α〉 = e(λ+iθ)/2
∫

dx ψ∗
n (x)ψα̃( eλx),

with α̃ = α eiθ . Proceeding in the same form as in appendix A we can get
∞∑

n=0

β∗n

√
n!

〈n|Ŝ(λ)R̂(θ)|α〉 = eiθ/2

√
cosh λ

exp

{
−|α|2

2
+

1

2
α̃2 tanh λ

}

× exp

{
−1

2
β∗2 tanh λ +

α̃

cosh λ
β∗

}
.

By means of the generating function of the Hermite polynomials we obtain the matrix element

〈n|Ŝ(λ)R̂(θ)|α〉 = e(−|α|2+iθ+(α eiθ )2 tanh λ)/2

√
| tanh λ|n

2nn! cosh λ
Hn

(
α eiθ

√| sinh 2λ|
)

. (51)

For α = 0, if we take the absolute value of the last expression, we get equation (48). One
can see that the tomograms (48) and (50) coincide with the photon distribution function
of squeezed vacuum and generic squeezed coherent states, respectively. These photon
distributions are given, e.g., in [26, 27]. In figure 2 we illustrate the behaviour of the
tomogram of a coherent state as a function of n and λ, using α = 1 and θ = 0.

If one considers the tomogram of a squeezed coherent state |α, r〉 = Ŝ(r)|α〉 with the
density operator

�̂α,r = |α, r〉〈α, r|, (52)

the squeeze tomogram of this state reads

Wα,r (n, λ, θ) = |〈n|Ŝ(λ)R̂(θ)Ŝ(r)|α〉|2. (53)

Using the properties of the product of two elements of the SU(1,1) group we obtain

Wα,r (n, λ, θ) = Wα(n, λ + r, θ). (54)
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Figure 3. Squeeze tomogram of one photon state. In this case, only for an odd number of photons
are the contributions different from zero.

Another specific example is the Fock state of the photon |m〉 with the density operator

�̂m = |m〉〈m|, m = 0, 1, . . . . (55)

The squeeze tomogram of this state is

Wm(n, λ) = |〈n|Ŝ(λ)|m〉|2. (56)

In fact, it is the modulus squared of the matrix element of the squeezing operator in the Fock
basis. It does not depend on the rotation angle θ due to the action of the rotation operator on
the Fock state

R̂(θ)|m〉 = ei(m+1/2)θ |m〉. (57)

Again, the squeeze tomogram coincides with the photon distribution function of the squeezed
Fock state. The example of the tomogram for the Fock state |1〉 reads

W1(n, λ) = n2

2n−1n!

(tanh λ)n−1

(cosh λ)3
[Hn−1(0)]2 . (58)

In figure 3, the tomogram for the one photon state is shown.
The even and odd coherent states (Schrödinger cat states) [22], are paradigmatic examples

of the superposition of quantum states. The density operators for these states read

�̂±
α = |N±|2(|α〉 ± |−α〉)(〈α| ± 〈−α|), (59)

where

N± =
√

1

2(1 ± e−2|α|2)
. (60)

The squeeze tomograms for the Schrödinger cat states are

W±
α (n, λ, θ) = 1

1 ± e−2|α|2 {|〈n|Ŝ(λ)R̂(θ)|α〉|2 ± Re[〈n|Ŝ(λ)R̂(θ)|α〉〈n|Ŝ(λ)R̂(θ)|−α〉∗]}

= 1

1 ± e−2|α|2 [1 ± (−1)n]Wα(n, λ, θ). (61)

We observe terms which are due to interference of states |α〉 and |−α〉. The tomogram
preserves the even and odd character of the states. In figure 4, the even and odd tomograms
are displayed for the parameters α = 0.9 and θ = 0.
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Figure 4. Squeeze tomogram of an even (a), and an odd (b), coherent state, with parameters
α = 0.9 and without rotations, i.e., θ = 0. For λ → 0, the even tomogram coincides with an
even photon number distribution function, while the odd tomogram coincides with an odd photon
number distribution function.

The example of a mixed state tomogram (thermal state of light) with the density operator

�̂T = 1

Z
e− 1

T
(â†â+1/2),

Z =
∞∑

n=0

e− 1
T

(n+1/2) = 1

2
cosech

(
1

2T

)
, (62)

is given by the sum

WT (n, λ, θ) = 1

Z

∞∑
m=0

e− 1
T

(m+1/2)Wm(n, λ) = 1

Z

∞∑
m=0

e− 1
T

(m+1/2) sech(λ)

m!n!

[
H {R}

nm (0)
]2

. (63)

The matrix R is given by

R =
(

tanh λ −sech λ

−sech λ − tanh λ

)
.

One can see that the squeeze tomogram does not depend on the rotation angle θ because it
contains the sum of Fock state tomograms, and these tomograms do not depend on the rotation
angle. For T → 0, the tomogram is approaching the tomogram of the vacuum state.

6. Extension to multimode case

One can extend the construction of the squeeze tomogram to the case of multimode light. We
define the squeeze tomogram in this instance as follows (we focus on two-mode light):

Wsq(n1, n2, µ1, µ2, ν1, ν2) = 〈n1n2|Ŝ(µ1, ν1)Ŝ(µ2, ν2)�̂Ŝ†(µ2, ν2)Ŝ†(µ1, ν1)|n1n2〉. (64)

Here the operators Ŝ are squeeze and rotation operators, which depend on the parameters
µ1, ν1, µ2 and ν2. The integers n1 and n2 are the number of photons in each mode
correspondingly. The squeeze tomogram (64) is the joint probability distribution function
of two discrete random variables. The probability distribution is normalized:

∞∑
n1,n2=0

Wsq(n1, n2, µ1, µ2, ν1, ν2) = 1. (65)
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One has also the relation
∞∑

n2=0

Wsq(n1, n2, µ1, µ2, ν1, ν2) = Wsq(n1, µ1, ν1). (66)

The squeeze tomogram for two-mode light is characteristic of the quantum state of light. The
squeeze tomogram for the multimode state of photons can be related to the Wigner function,
symplectic tomogram and density matrix by the same method as was used in the previous
section for one-mode light.

7. Conclusions

To conclude, we summarize the main results of the work.
We introduced a new kind of tomogram which is the photon distribution functions of

the field states of light obtained by squeezing and rotation of the density operator. The new
tomograms are related to the Wigner function, density matrix and symplectic tomogram by
means of the integral transforms. We found the kernels of the integral transforms. In the limit
case of identical transform with specific rotation and dilatation parameters, the kernel satisfies
the condition to provide the expressions for photon statistics in the chosen initial state in terms
of the Wigner function, symplectic tomogram and density matrix.

We extended the approach of squeeze tomography to the multimode case. The obtained
results could be complementary characteristics of the quantum states of light in addition to
known ones given by optical tomograms and photon number tomograms. The introduced
multimode tomograms can be applied to analyse the property of entanglement of the quantum
state of light.

The results obtained are mainly connected with theoretical aspects of quantum
tomography. We hope that the squeeze-tomography scheme can also be used in the
experimental study of light states.
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Appendix A. Transformation kernel from density matrix to squeeze tomogram

The squeeze tomogram is defined in equation (18) and if the identity operator in the position
representation is introduced, it is given by the expression

Wsq =
∫ ∫

dx dy〈n|ŜR̂|x〉�̂(x, y)〈y|(ŜR̂)†|n〉. (A.1)

By means of the results

Ŝ|y〉 = e−λ/2|e−λy〉 (A.2)

and

ŜR̂†Ŝ† = exp
{
− i

2
θ(e−2λp2 + e2λq2)

}
, (A.3)

it is immediately clear that

〈y|R̂†Ŝ†|n〉 = e−λ/2
∫

dy ′ψn(y
′)〈e−λy| exp

{
− i

2
θ(e−2λp2 + e2λq2)

}
|y ′〉. (A.4)
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In the last expression, the matrix element within the integration symbol can be identified
as a Green function of the operator H = (e−2λp2 + e2λq2)/2, which is given by the
expression [27]

G(e−λy, y ′, θ) = 1√
2π i e−2λ sin θ

exp
{ i

2
cot θ(y2 + e2λy ′2) − i cosec θ eλyy ′

}
. (A.5)

Thus we have that

〈y|R̂†Ŝ†|n〉 = ei cot θy2/2In(y, µ, ν), (A.6)

with

In(y, µ, ν) = e−λ/2

√
2π i sin θ

∫
dy ′ψn(e

−λy ′) exp
{ i

2
cot θy ′2 − i cosec θ yy ′

}
, (A.7)

where equation (7),

µ = eλ cos θ, ν = e−λ sin θ,

is used to rewrite the expression in terms of the parameters µ and ν. To evaluate the integral
in (A.7), one multiplies it by βn/

√
n! and makes the sum over n; this lets us identify on the

right-hand side the coherent state wavefunction in position representation ψβ(e−λy ′). This
leads to a Gaussian integral which can be evaluated to give

∞∑
n=0

βn

√
n!

In(y, µ, ν) = e−β2/2√
i
√

π(µ + iν)
exp

{
− i

2

y2

ν(µ + iν)

}

× exp

{
i

ν

µ + iν
β2 +

√
2

y

µ + iν
β

}
. (A.8)

Next we carry out an expansion in β by means of the generating function of the Hermite
polynomials to get

〈y|R̂†Ŝ†|n〉 = 1√
i
√

π(µ + iν)
exp

{
i

2

[
cot θ − 1

ν(µ + iν)

]
y2

}

×
(

µ − iν√
µ2 + ν2

)n
1√
2nn!

Hn

(
y√

µ2 + ν2

)
. (A.9)

Substituting this matrix element and its conjugate with y replaced by x into expression (A.1),
we obtain the kernel of the integral transform that connects the squeeze tomogram with the
density matrix given in equation (24):

K(x, y, n, µ, ν) = 1√
π(µ2 + ν2)2nn!

Hn

(
x√

µ2 + ν2

)
Hn

(
y√

µ2 + ν2

)

× exp

{
−i

x2

2

[ √
2

1 −
√

1 − 4µ2ν2
− µ + iν

ν(µ2 + ν2)

]

+ i
y2

2

[ √
2

1 −
√

1 − 4µ2ν2
− µ − iν

ν(µ2 + ν2)

]}
.

Appendix B. Tranformation kernel from the Wigner function to squeeze tomogram

The density matrix in position representation can be written in terms of the Wigner function
as

�(x, y) = 1

2π

∫
dp eip(x−y)W

(x + y

2
, p

)
. (B.1)
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Substituting this expression into equation (23) and considering the transformation

q = x + y

2
, q ′ = x − y

2
,

we find equation (25) with

KW(q, p, n, µ, ν) = 1

π

∫
dq ′ e2ipq ′K(q + q ′q − q ′, n, µ, ν). (B.2)

The integral function

KW(q, p, n,m,µ, ν) = 1

π
√

π(µ2 + ν2)

∫
dq ′ e2ipq ′ 1√

2n+mn!m!

× exp{−fI (q
2 + q ′2) − 2ifRqq ′}Hn

(
q + q ′√
µ2 + ν2

)
Hm

(
q − q ′√
µ2 + ν2

)
, (B.3)

with

fR =
√

2

1 −
√

1 − 4µ2ν2
− µ

ν(µ2 + ν2)
, fI = 1

µ2 + ν2
,

is defined. It has the property that if n = m, one gets (B.2) after the substitution of the
transformation kernel given in equation (24).

Multiplying equation (B.3) by αnγ m/
√

(n!m!), summing over n and m, and using the
expansion of coherent states in terms of the harmonic oscillator wavefunctions,

∞∑
n=0

αn

2n/2n!
Hn(x) = π1/4 e|α|2/2ex2/2ψα(x),

one has the result

I (α, γ ) ≡
∞∑

n,m=0

αnγ n

√
n!m!

KW(q, p, n,m,µ, ν)

= 1

π
√

µ2 + ν2
e(|α|2+|γ |2)/2

∫
dq ′ e2ipq ′

e−2ifRqq ′

× ψα

(
q + q ′√
µ2 + ν2

)
ψγ

(
q − q ′√
µ2 + ν2

)
. (B.4)

Making the substitutions of the coherent state wavefunctions and evaluating the Gaussian
integral, we obtain

I (α, γ ) = 1

π
exp

{
− q2

µ2 + ν2
− (µ2 + ν2)(p − fRq)2

}

× exp

{
−1

2
(α γ )

(
0 1
1 0

)(
α

γ

)
+ (α γ )

(
z∗

z

)}
, (B.5)

with

z =
√ √

2

µ2 + ν2
q + i

√
2(µ2 + ν2)(p − fRq). (B.6)

Using the generating function for the multidimensional Hermite polynomials [27]

exp

{
−1

2
(α γ )R

(
α

γ

)
+ (α γ )

(
z∗

z

)}
=

∞∑
n,m=0

αn

n!

γ m

m!
H {R}

nm (z∗, z),
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we have the result

KW(q, p, n,m,µ, ν) = 1

π
√

n!m!
e−|z|2/2H {R}

nm (z∗, z),

R =
(

0 1
1 0

)
. (B.7)

Finally in [27] appears the result

H {R}
nm (z∗, z) = (−1)nn!Ln(|z|2), R =

(
0 1
1 0

)
,

where Ln(x) denotes the Laguerre polynomial of order n.
Thus if we consider n = m in expression (B.7) and replace the bidimensional Hermite

polynomial, we find the transformation kernel given in equation (26):

KW(q, p, n, µ, ν) = (−1)n

π
exp(−|z|2/2)Ln(|z|2),

with

|z|2 = 2q2

µ2 + ν2
+ 2(µ2 + ν2)(p − fRq)2.
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