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Abstract
The spin-state tomogram is presented as the modulus squared of the matrix
element of the SU(2)-group irreducible representation. For the spin system,
we established explicitly a realization of the set of operators defining for spin
tomograms the star-product formalism in terms of irreducible tensors. On the
set of spin tomograms, the delta-function and ‘standard’ and Moyal-like kernels
of the tomogram star-product are calculated explicitly in terms of Clebsch–
Gordan and Racah coefficients and matrix elements of the SU(2) irreducible
representation. In the limit of infinite spin, the spin tomogram is shown to
become the tomogram of the harmonic-oscillator state.

PACS numbers: 03.65.Ta, 03.65.Sq, 03.65.Wj

1. Introduction

Representations of Lie groups such as the SU(2) group (see,e.g., [1, 2]) are used to describe the
quantum states of particles with spin. The Lie group representations are important ingredients
of gauge theories (see, e.g., [3–5]) and nonlinear equations related to gauge theory models.
Here we discuss a new approach to consider the SU(2)-group irreducible representations
within the framework of a tomographic star-product quantization procedure.

The tomographic map of spin states onto a probability distribution, which can be used
to describe the states as an alternative to the density operator, was elaborated in [6, 7]. An
analogous construction was suggested in [8–10]. There exist other maps of spin operators
onto functions [11–13]. These maps can be considered within the framework of the star-
product procedure [14]. The tomographic map of spin operators was shown in [15] to realize
a new version of the star-product procedure. In [16] a general construction of the star-product
procedure was formulated. The tomographic map related to the Heisenberg–Weyl group [17]
was shown to be described by means of a specific star-product procedure and the kernel, which
1 On leave from P N Lebedev Physical Institute, Moscow, Russia.
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determines the star-product, was explicitly calculated [16]. Various aspects and properties of
spin tomograms were studied in [18–20]. The relations of different tomographic approaches
to spin states were considered in [21]. Application of spin tomography to the problem of a
Bose–Einstein condensate was studied in [22]. The tomogram of the particle state described by
the wavefunction dependent on the position x (−∞ < x < ∞) was expressed in terms of the
wavefunction in [23]. Such states can be related to the Heisenberg–Weyl group representation.
Though general formulae for the kernel that determines the star-product of spin tomograms
were discussed (see, for example, [24]), the explicit final expression for the kernel was not
found until now, as well as the expressions of spin tomograms in terms of spin wavefunctions.

The aim of this work is to obtain an explicit expression of the star-product kernel for
spin tomograms in terms of Clebsch–Gordan and Racah coefficients. We also find explicit
expressions for the delta-function for a set of spin tomograms. The tomograms of pure and
mixed states are expressed in terms of the modulus squared of the matrix element of the
SU(2) irreducible representation. Since in the limit of infinite spin the SU(2) group can be
transformed to the Heisenberg–Weyl group (see, for example, [8, 21, 25, 26]), the tomograms
of spin states must become the tomograms of the harmonic-oscillator states. In [27–30] the
asymptotic expressions of matrix elements of the SU(2) irreducible representation in the limit
of large spin were found. Using these asymptotics we will show that spin tomograms become
the harmonic-oscillator-state tomograms for coherent and Fock states. The results obtained
are demonstrated by taking explicitly the examples of spin-1/2 and spin-1 cases.

The paper is organized as follows. In section 2, we review the standard properties of spin
states and spin operators. In section 3, the reconstruction formula for a spin density operator is
rederived. In section 4, the tomograms of pure and mixed spin states are obtained. In section 5,
the star-product procedure for the spin tomogram is reviewed. In section 6, the delta-function
for the spin tomogram is obtained. In section 7, the kernel of the spin-tomogram star-product is
shown explicitly. In section 8, quantum evolution of the spin tomograms within the framework
of a Moyal-like approach [11, 31] is studied. In section 9, we demonstrate the results for the
cases s = 1/2 and s = 1. Asymptotics of spin tomograms and the relation of the asymptotics
to the harmonic-oscillator tomograms are studied in section 10. Perspectives and conclusions
are presented in section 11.

2. Review of the properties of spin states and spin-related operators

An approach to map spin operators onto functions on the Bloch sphere [15] exists. Following
[6, 7] we treat the expression for an arbitrary observable acting on spin states in terms of
measurable mean values of the observable in the state with given spin projection onto a given
direction considered in a rotated reference frame.

Below we describe some standard operators used to discuss the properties of spin states.
For arbitrary values of spin, let the observable Â(j) be represented by the matrix in the

standard basis of the angular momentum generators Ĵ i , i = 1, 2, 3, defined through

Ĵ 2|jm〉 = j (j + 1)|jm〉 Ĵ 3|jm〉 = m|jm〉 (1)

as

Â(j) =
j∑

m=−j

j∑
m′=−j

A
(j)

mm′ |jm〉〈jm′| (2)

where

A
(j)

mm′ = 〈jm | Â(j) |jm′〉 m = −j,−j + 1, . . . , j − 1, j. (3)
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Let us consider the spin-j projector operator onto the m1 component along the z-axis,

�̂(j)
m1

= |jm1〉〈jm1| (4)

and the same projector in a rotated reference frame by an element g of SU(2),

�̂(j)
m1

(g) = R†(g)�̂(j)
m1

R(g). (5)

R(g) is a rotation operator of the SU(2) irreducible representation with spin j . Since the
projectors play an important role in constructing the tomographic map, we present several
different expressions for these operators. The projector can be given in an alternative form in
terms of the Dirac (Kronecker) delta-function:

�̂(j)
m1

= δ(m1 − Ĵ 3). (6)

The rotated projector can also be expressed in terms of the Dirac (Kronecker) delta-function
as follows:

�̂(j)
m1

(g) = δ(m1 − R†(g)Ĵ 3R(g)) (7)

or in integral form

�̂(j)
m1

(g) = 1

2π

∫ 2π

0
exp[i(m1 − R†(g)Ĵ 3R(g))ϕ] dϕ. (8)

Another form of the rotated projector is given by the expression

�̂(j)
m1

(g) =
∑
m′

1m
′
2

D
(j)∗
m1m

′
2
(α, β, γ )D

(j)

m1m
′
1
(α, β, γ )|jm′

2〉〈jm′
1|. (9)

The matrix elements D
(j)

m1m
′
1
(α, β, γ ) (Wigner D-functions) are the matrix elements of the

operator

R(g) = e−iαĴ 3 e−iβĴ 2 e−iγ Ĵ 3 (10)

of the SU(2) group representation (g is an element of the SU(2) group parametrized by the
Euler angles). The matrix elements have the known explicit form

D
(j)

m′m(α, β, γ ) = e−im′αd
(j)

m′m(β) e−imγ (11)

where

d
(j)

m′m(β) =
∑

s

(−1)s
√

(j + m)!(j − m)!(j + m′)!(j − m′)!
s!(j − m′ − s)!(j + m − s)!(m′ − m + s)!

×
(

cos
β

2

)2j+m−m′−2s (
−sin

β

2

)m′−m+2s

. (12)

It is convenient to introduce the irreducible tensor operator for the SU(2) group:

T̂
(j)

LM =
j∑

m1,m2=−j

(−1)j−m1〈jm2; j − m1|LM〉|jm2〉〈jm1|. (13)

Some examples of these tensors for j = 1/2 and j = 1 are given in section 9.
The irreducible tensors have the known properties (see [13, 26, 32])

Tr
(
T̂

(j)†
L1M1

T̂
(j)

L2M2

) = δL1L2δM1M2 (14)

Tr
(
T̂

(j)

L1M1
T̂

(j)

L2M2
T̂

(j)

LM

) = (−1)L1+L2+L−2j

(
L1 L2 L

M1 M2 M

) {
L1 L2 L

j j j

}

×
√

(2L1 + 1)(2L2 + 1)(2L + 1). (15)
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The operator |jm〉〈jm′| can be expressed in terms of the irreducible tensors as follows:

|jm〉〈jm′| =
2j∑

L=0

L∑
M=−L

(−1)j−m′ 〈jm; j − m′|LM〉T̂ (j)

LM. (16)

This means that the irreducible tensors form a basis in the linear space of operators acting on
the unitary space of the SU(2) irreducible representation.

3. Tomogram and reconstruction formula

Following [6, 7, 15, 16, 20, 21] we introduce the tomogram of the observable Â(j):

w(m1, β, γ ) = Tr[Â(j)R†(g)|jm1〉〈jm1|R(g)]

=
j∑

m′
1=−j

j∑
m′

2=−j

D
(j)

m1m
′
1
(α, β, γ )A

(j)

m′
1m

′
2
D

(j)∗
m1m

′
2
(α, β, γ ). (17)

In view of the structure of formula (17), the tomogram depends only on two Euler angles, i.e.
the tomogram depends on the spin projection and a point on the Bloch sphere.

The tomogram can be presented in another form using the Kronecker delta-function,
which is the general form for the tomograms of arbitrary observables suggested in [33]:

w(m1, β, γ ) = TrÂ(j)δ(m1 − R†(g)Ĵ 3R(g)). (18)

It is obvious that the tomogram of the identity operator equals unity.
To derive the inverse of (17), we multiply it by the Wigner D-function D

j ′
µ′m′(α, β, γ ),

and integrate over the volume element of the SU(2) group, i.e.,∫
d�w(m1, β, γ )D

j ′
µ′m′(α, β, γ ) =

∑
m′

1m
′
2

〈j ′m′; jm′
1|jm′

2〉〈j ′µ′; jm1|jm1〉 8π2

2j + 1
A

j

m′
1m

′
2

(19)

where the known property of the Wigner D-functions (D(α, β, γ ) ≡ D(�))∫
d�D

j3∗
m′

3m3
(�)D

j2

m′
2m2

(�)D
j1

m′
1m1

(�) = 8π2

2j3 + 1
〈j1m1; j2m2|j3m3〉〈j1m

′
1; j2m

′
2|j3m

′
3〉

(20)

was used.
In view of the symmetry relations and properties of the Clebsch–Gordan coefficients, we

have that

〈j ′m′; jm′
1|jm′

2〉〈j ′µ′; jm1|jm2〉
= (−1)j+m1+j+m′

1
2j + 1

2j ′ + 1
δµ′0〈jm1; j − m1|j ′0〉〈jm′

2; j − m′
1|j ′m′〉. (21)

Using the orthonormality property of the Clebsch–Gordan coefficients
j∑

m1=−j

〈jm1; j − m1|j ′0〉〈jm1; j − m1|j ′0〉 = 1

we have that∑
m1

2j ′ + 1

8π2
〈jm1; j − m1|j ′0〉

∫
d�(−1)j+m1w(m1, β, γ )D

j ′
0m′(�)

=
j∑

m′
1,m

′
2=−j

(−1)j+m′
1〈jm′

2; j − m′
1|j ′m′〉A(j)

m′
1m

′
2
. (22)
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Multiplying this equation by 〈jµ2; jµ1|j ′m′〉 and summing over the indices j ′ and m′, we
arrive at the result

A(j)
µ1µ2

=
2j∑

j ′=0

j ′∑
m′=−j ′

j∑
m1=−j

(−1)m1−µ1 〈jm1; j − m1|j ′0〉〈jµ1; j − µ2|j ′m′〉

× (2j ′ + 1)

8π2

∫
d� w(m1, β, γ )D

j ′
0−m′ (α, β, γ ). (23)

Using equations (2) and (16) we can write the observable operator Â(j) in terms of unitary
irreducible tensors as follows:

Â(j) =
j∑

µ1,µ2=−j

2j∑
L=0

L∑
M=−L

(−1)j−µ2〈jµ1; j − µ2|LM〉T̂ (j)

LMA(j)
µ1µ2

. (24)

Substituting A
(j)
µ1µ2 into (24), in view of the orthonormality of the Clebsch–Gordan coefficients,

we get the observable in terms of its corresponding tomogram:

Â(j) =
2j∑

L=0

L∑
M=−L

j∑
m=−j

(−1)j−m+M 2L + 1

8π2
〈jm; j − m|L0〉

×
(∫

d� w(m, β, γ )DL
0−M(α, β, γ )

)
T̂

(j)

LM. (25)

The density operator ρ̂ can be expanded in terms of irreducible tensors (13) as follows:

ρ̂ =
2j∑

L=0

L∑
M=−L

(−1)M
2L + 1

8π2

∫
d�D

(L)

0−M(α, β, γ )

×
j∑

m=−j

(−1)j−mw(m, β, γ )〈jm; j − m|L0〉T̂ (j)

LM. (26)

4. Tomogram of pure and mixed states

If one considers the tomogram of the density operator

ρ̂ψ = |ψ〉〈ψ|
of the pure state |ψ〉, the tomogram reads

wψ(m1, β, γ ) = |〈jm1|R(g)|ψ〉|2. (27)

This means that the tomogram is the modulus squared of the matrix element of matrix R(g) of
the SU(2) irreducible representation between the states |ψ〉 and |jm1〉. If one has the density
operator of mixed state written in terms of its eigenvalues pi � 0,

∑
i pi = 1 and eigenvectors

|ψi〉 in the form

ρ̂ =
∑

i

pi |ψi〉〈ψi | (28)

the state tomogram can also be expressed in terms of the modulus squared of the matrix
elements of the rotation group

w(m1, β, γ ) =
∑

i

pi |〈jm1|R(g)|ψi〉|2. (29)
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The above two formulae are an extension of the expression of the state tomogram found in [23]
for the position observable in terms of the wavefunction to the case of spin-state tomograms.

For example, if the state |ψ〉 is the pure state |jµ〉, its tomogram reads

wjµ(m1, β, γ ) = ∣∣d(j)
m1µ

(β)
∣∣2

(30)

where d
(j)

m1M
(β) is given by (12). The tomogram depends only on the Euler angle β.

The existence of inverse relation (26) means that the modulus of the matrix element of
the SU(2) irreducible representation determines the phase of the matrix element.

5. Star-product for spin tomograms

In this section, we describe the relation of the above construction to the star-product procedure
in the form of [15, 16].

In quantum mechanics, observables are described by operators acting on a Hilbert space
of states. Given a Hilbert space H of spin states and an operator Â acting on this space, let
us suppose that we have a set of operators Û(x) acting on H in terms of a four-dimensional
vector x = (m, α, β, γ ), where the first component is a spin projection and the other three
Euler angles parametrize an element of the SU(2) group. We construct the c-number function
fÂ(x) (called the symbol of operator Â) using the definition

fÂ(x) = Tr[ÂÛ(x)]. (31)

Let us suppose that relation (31) has an inverse, i.e., there exists a set of operators D̂(x)

acting on Hilbert space such that

Â =
∫

fÂ(x)D̂(x) dx
∫

dx =
j∑

m1=−j

∫
d�. (32)

That is, in this formula,
∫

dx means integration over continuous variables and summation over
the discrete component. Then we consider relations (31) and (32) as relations determining the
invertible map of the operator Â onto function fÂ(x).

The most important property of the map is the existence of the associative product (star-
product) of symbols.

We introduce the product (star-product) of two symbols fÂ(x) and fB̂ (x) corresponding
to two operators Â and B̂ by the relations

fÂB̂(x) = fÂ(x) ∗ fB̂ (x) := Tr[ÂB̂Û (x)]. (33)

Since the standard product of operators on a Hilbert space is an associative product, i.e.

Â(B̂Ĉ) = (ÂB̂)Ĉ

it is obvious that formula (33) defines an associative product for the functions, i.e.

fÂ(x) ∗ (fB̂ (x) ∗ fĈ(x)) = (fÂ(x) ∗ fB̂ (x)) ∗ fĈ(x). (34)

In view of (31), the commutation relation of two operators

Ĉ = [Â, B̂] = ÂB̂ − B̂Â (35)

is mapped onto the Poisson bracket fĈ(x) of two symbols fÂ(x) and fB̂(x) by means of the
formula

fĈ(x) = {fÂ(x), fB̂(x)}∗ = Tr[[Â, B̂]Û(x)]. (36)

One can express the operators determining the star-product of tomographic symbols in terms of
irreducible tensors. By comparing the formulae defining the generic symbol of operators (31)
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and its inverse (32) with the formulae defining the observable tomogram (18) and its inverse
(25), one can find the operators Û(x) and D̂(x) explicitly. It is obvious that the operators
Û(x) ≡ Û(m,�) and D̂(x) ≡ D̂(m,�) can be expressed as follows:

Û(m,�) =
2j∑

L=0

L∑
M=−L

(−1)j−m+M 〈jm; j − m|L0〉DL
0−M(α, β, γ )T̂

(j)

LM (37)

D̂(m,�) =
2j∑

L=0

L∑
M=−L

(−1)j−m+M 2L + 1

8π2
〈jm; j − m|L0〉DL

0−M(α, β, γ )T̂
(j)

LM. (38)

These formulae are convenient to calculate explicitly the kernel of the star-product of
tomographic symbols.

6. Delta-function on the tomogram set

In view of the properties of operators Û(x) and D̂(x), the following equality for the spin
tomogram must exist:

|〈jm|R(g)|ψ〉|2 =
j∑

m′=−j

∫
d�′ Tr[D̂(m′,�′)Û(m,�)]|〈jm′|R(g′)|ψ〉|2 (39)

which is valid for an arbitrary spin state |ψ〉. This equality means that on the set of spin
tomograms w(j)(m,�) the trace of the product of the operators D̂(x) and Û(x) plays the role
of an analogue of the Dirac delta-function and we denote it as

δ(m,m′,�,�′) = Tr[D̂(m′,�′)Û(m,�)]. (40)

In fact, it is the kernel of the unity operator on the set of spin tomograms. For spin j , one can
write explicitly this kernel or delta-function:

Tr[D̂(m′,�′)Û(m,�)] =
2j∑

L=0

(−1)m−m′ 2L + 1

8π2
〈jm; j − m|L0〉〈jm′; j − m′|L0〉PL(cos θ)

where PL(x) is the Legendre polynomial of order L and θ is the angle between directions
(β, γ ) and (β ′, γ ′) given by

cos θ = cos β cos β ′ + sin β sin β ′ cos(γ − γ ′).

7. Kernel of standard star-product

Using formulae (31) and (32), one can write down a composition rule for two symbols fÂ(x)

and fB̂(x), which determines the star-product of these symbols. The composition rule is
described by the formula

fÂ(x) ∗ fB̂ (x) =
∫

fÂ(x′′)fB̂(x′)K(x′′, x′, x) dx′ dx′′. (41)

The kernel in the integral of (41) is determined by the trace of the product of the basic operators,
which we use to construct the map [16]:

K(x′′, x′, x) = Tr[D̂(x′′)D̂(x′)Û(x)]. (42)
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Within this framework, according to (4), (5) and (7), we have two equivalent expressions for
the operator Û(x):

Û(x) = δ(m1 − R†(g)Ĵ 3R(g)) = R(g)†|jm1〉〈jm1|R(g) (43)

or due to the structure of this equation

Û(x) = δ(m1 − n · Ĵ) n = (sin β cos γ, sin β sin γ, cos β) . (44)

The dual operator reads

D̂(x) =
2j∑

L=0

L∑
M=−L

(−1)j−m+M 2L + 1

8π2
D

(L)
0−M(α, β, γ )〈jm; j − m|L0〉T̂ (j)

LM (45)

where T̂
(j)

LM is given in equation (13).
Inserting the expressions for the operators Û(x) and D̂(x) in (42) and using the properties

of irreducible tensors (14) and (15), one can calculate explicitly the kernel of the spin star-
product, which has the form

K(x2, x1, x) ≡ K(m2,�2,m1,�1,m,�)

= (−1)j−m−m1−m2

2j∑
L=0

2j∑
L1=0

2j∑
L2=0

(2L1 + 1)(2L2 + 1)

64π4

×〈jm; j − m|L0〉〈jm1; j − m1|L10〉〈jm2; j − m2|L20〉

×
L∑

M=−L

L1∑
M1=−L1

L2∑
M2=−L2

(−1)L+L1+L2
√

(2L + 1)(2L1 + 1)(2L2 + 1)

×
{
L1 L2 L

j j j

} (
L1 L2 L

M1 M2 M

)
D

(L)

0−M(�)D
(L1)

0−M1
(�1)D

(L2)

0−M2
(�2) . (46)

Thus we obtained the explicit expression for the star-product kernel of spin tomograms in terms
of Clebsch–Gordan coefficients, 6j -symbols (Racah coefficients) and Wigner D-functions.

8. Evolution of tomograms and Moyal-like kernel

In quantum mechanics, the evolution of nonexplicitly time-dependent observables Â can be
described by the Heisenberg equation of motion

˙̂A = i[Ĥ , Â] (h̄ = 1) (47)

where Ĥ is the system Hamiltonian. This equation can be rewritten in terms of symbols fÂ(x)

and fĤ (x) in the form

ḟ Â(x, t) = i{fĤ (x, t), fÂ(x, t)}∗ (48)

where

fĤ (x) = Tr[Ĥ Û(x)] (49)

corresponds to the Hamiltonian, and with the Poisson bracket defined by equation (36) using
the star-product given by equation (33).

The quantum evolution equation for the symbol of the observable can be presented in the
form of an integral equation.
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The kernel of the star-product obtained in the previous section determines the kernel,which
provides the integral form of the quantum evolution equation (47). The kernel corresponding
to the Poisson bracket term reads

Km(x2, x1, x) ≡ K(m2,�2,m1,�1,m,�) − K(m1,�1,m2,�2,m,�)

= (−1)j−m−m1−m2

2j∑
L=0

2j∑
L1=0

2j∑
L2=0

[1 − (−1)L+L1+L2 ]
(2L1 + 1)(2L2 + 1)

64π4

× 〈jm; j − m|L0〉〈jm1; j − m1|L10〉〈jm2; j − m2|L20〉

×
L∑

M=−L

L1∑
M1=−L1

L2∑
M2=−L2

(−1)L+L1+L2
√

(2L + 1)(2L1 + 1)(2L2 + 1)

×
{
L1 L2 L

j j j

}(
L1 L2 L

M1 M2 M

)
D

(L)
0−M(�)D

(L1)
0−M1

(�1)D
(L2)
0−M2

(�2) . (50)

For the evolution of the magnetic moment moving in the magnetic field, the star-product
formalism was used in [15]. The kernel (50) gives the possibility of studying the quantum
evolution of spin states for large values of spin j .

9. Examples of j = 1/2 and j = 1

Next we give for the SU(2)-group irreducible representations the explicit form of the operators
Û(x) and D̂(x), which define the star-product of spin tomograms for j = 1/2 and j = 1
cases. First we give the irreducible tensors for j = 1/2. These can be written in terms of the
Pauli matrices σσσx,σσσy,σσσ z and the identity matrix III 2×2 (we omit hats)

T
(1/2)

00 = 1√
2
III 2×2

T
(1/2)

11 = − 1√
2
σσσ + T

(1/2)

10 = 1√
2
σσσ z T

(1/2)

1−1 = 1√
2
σσσ−

where σσσ± = σσσx ± iσσσy .
For the case j = 1, they can be written in terms of the matrix representations of the

angular momentum operators JJJ ± and JJJ 0 and their products:

T
(1)

00 = 1√
3
III 3×3

T
(1)

11 = − 1
2JJJ + T

(1)
10 = 1√

2
JJJ 0 T

(1)
1−1 = 1

2JJJ −

T
(1)

22 = 1
2JJJ

2
+ T

(1)
21 = − 1

2 (JJJ +JJJ 0 + JJJ 0JJJ +) T
(1)

20 = √
6
(

1
2JJJ

2
0 − 1

3III 3×3
)

T
(1)

2−1 = 1
2 (JJJ−JJJ 0 + JJJ 0JJJ −) T

(1)
2−2 = 1

2JJJ
2
−.

By means of expressions (37) and (38), we get for j = 1/2 that

Û(x) = 1
2III 2×2 + mFFF(β, γ ) (51)

D̂(x) = 1

8π2

(
1

2
III 2×2 + 3mFFF(β, γ )

)
(52)

where we defined the matrix

FFF(β, γ ) =
(

cos β −eiγ sin β

−e−iγ sin β −cos β

)
. (53)

For j = 1 we write the corresponding results in terms of the Wigner D-functions and the
irreducible tensors, i.e.
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Û(x) = 1√
3
T

(1)

00 +
∑
M

(−1)M
m√

2
D

(1)

0−M(�)T
(1)

1M +
∑
M

(−1)M
3m2 − 2√

6
D

(2)

0−M(�)T
(1)

2M (54)

D̂(x) = 1

8π2

(
1√
3
T

(1)
00 +

∑
M

(−1)M
3m√

2
D

(1)
0−M(�)T

(1)
1M

+
∑
M

(−1)M
15m2 − 10√

6
D

(2)
0−M(�)T

(1)
2M

)
. (55)

With these explicit expressions for Û(x) and D̂(x) operators, it is straightforward to construct
the tomogram of any physical observable in the Hilbert space for j = 1/2 and j = 1.

10. Asymptotic spin tomograms

In this section, we consider the behaviour of spin tomograms for pure states in the limit of
high values of spin j .

Since the tomogram of a pure spin state |jm0〉 is expressed in terms of the matrix element of
the SU(2)-group irreducible representation, we use the known asymptotics of these elements
for j → ∞ studied in [27–30]. For example, there exists the asymptotics of the matrix
elements of the SU(2)-group irreducible representations expressed in terms of the Hermite
polynomials and one has the explicit relation of the form [30]

d
(j)

mm′(β) = (−1)j−m′
(πj sin2 β)−1/4 [2j−m′

(j − m′)!]−1/2

× exp[−2j sin2 β]Hj−m′

(
m − j cos β√

j sin β

)
. (56)

The formula is similar to the expression for the wavefunction of the (j − m′)th level of the
harmonic oscillator. For j = m′, one has

d
(j)

mj (β) = (πj sin2 β)−1/4 exp[−2j sin2 β] (57)

a Gaussian which is identical to the wavefunction of the ground state of the harmonic oscillator.
Correspondingly, the spin tomograms are given by the relations

w(j)(m, β) = (πj sin2 β)−1/2[2j−m′
(j − m′)!]−1

× exp[−2j sin2 β]H 2
j−m′

(
m − j cos β√

j sin β

)
(58)

and for m′ = j one has the tomogram asymptotics

w(j)(m, β) = (πj sin2 β)−1/2 exp[−2j sin2 β]. (59)

One can see that these spin tomograms are identical to the tomograms of the energy level
states of the harmonic oscillator w(X,µ, ν) found in [34]. Thus, for the coherent state |α〉
of the harmonic oscillator, the tomogram wα(X,µ, ν), where µ, ν are real parameters and X
is the position measured in a reference frame in the phase space of the oscillator labelled by
these two parameters, reads

wα(X,µ, ν) = 1√
π(µ2 + ν2)

exp

[
−

(
X − √

2 Re αµ − √
2 Im αν

)2

µ2 + ν2

]
. (60)

The tomogram of the oscillator’s ground state corresponds to α = 0 and it is

w0(X,µ, ν) = 1√
π(µ2 + ν2)

exp

[
− X2

µ2 + ν2

]
. (61)
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The tomogram of the nth energy level of the harmonic oscillator reads

wn(X,µ, ν) = w0(X,µ, ν)
1

2nn!
H 2

n

(
X2

µ2 + ν2

)
. (62)

One can see that the asymptotics of the
∣∣d(j)

mm′(β)
∣∣2

in (6) coincides with the tomogram (62)
provided the following replacements are done:

m − j cos β → X j sin2 β → µ2 + ν2.

The tomogram asymptotics (59) coincides with the tomogram of the oscillator’s coherent state
provided the term j cos β is interpreted as the quadrature mean 〈x〉. We have checked by
computer the validity of approximation (58) for the d

(j)

mm′ function. For j = 5 × 105 and
β = π/2, the maximum difference is � ∼ 10−2 where

� =

∣∣∣(d(j)

mm′(β)
)2 − w(j)(m, β)

∣∣∣
|w(j)(m, β)| .

It is very small for all values of m and of the given order only for m ≈ −j .

11. Conclusions

To conclude, we summarize the results of our study.
We have shown that the spin tomogram of the pure spin state with fixed spin projection is

determined by the modulus squared of the matrix element of the SU(2)-group irreducible
representation. This means that the modulus of the matrix element of the irreducible
representation determines the phase of the matrix element (up to a constant factor).
The new result of this work is the explicit expressions for the kernels which determine
the delta-function for the spin-tomographic symbols and the star-product of the symbols,
respectively.

Using the relation of Heisenberg–Weyl and SU(2) groups in the limit of high spins, we
calculate spin tomograms in this limit. We have shown that, for large spin values, the spin
tomograms become the tomograms of the harmonic-oscillator states.

The approach developed demonstrates that one can use the standard probability
distribution to describe the quantum spin state instead of spinors or density matrices. The
tomogram construction resembles a finite-dimensional C∗ operator algebra representation but
the correspondence needs better clarification. The product of tomographic symbols of the
spin operators is determined by the kernel expressed in terms of the standard ingredients of
SU(2)-representation theory which are Wigner D-functions, Clebsch–Gordan coefficients and
6j -symbols (Racah coefficients).

The new approach to the description of spinors by means of probability distributions
can be applied to gauge theory models and related nonlinear equations based on the SU(2)

symmetry. Also the approach can be extended to other Lie group representations.
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