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Abstract. Tomographic-probability representation for soliton solutions of Gross-Pitaevskii equation is in-
troduced. Tomograms of the wavefunction describing bright soliton states of Bose-Einstein condensate are
obtained in the presence of a quadratic external potential.
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1 Introduction

Recently, the nonlinear Schrödinger equation (NLSE) was
written in the new (for nonlinear systems) tomographic
probability representation [1]. This representation, associ-
ated with the linear Schrödinger equation is widely used
in quantum optics (see, f.i., Ref. [2] and reference therein).
When the Schrödinger equation is nonlinear (as in a num-
ber of nonlinear physical problems), its solutions can be
expressed in the form of probability distribution func-
tion obeying a nonlocal nonlinear generalization of Fokker-
Planck-type equation, as well. In particular, this approach
can be applied to the soliton solutions of NLSE [1].

The states of Bose-Einstein condensates (BEC) are de-
scribed by solutions of nonlinear Gross-Pitaevskii equa-
tion [3–5]. In comparison with the standard NLSE, this
equation contains an additional linear term which depends
on the potential-energy term (e.g. a harmonic-oscillator
potential energy of a trap). The tomographic probability
distribution map was used in [6] to write down linear von
Neumann equation for density matrix [7] in the form of
classical-like equation for the standard positive probabil-
ity density.

The aim of our work is to obtain a combination of both
the tomographic approach to NLSE developed in [1] and
the approach to von Neumann equation given in [6] and
to apply a generalization of this approach to nonlinear
Gross-Pitaevskii equation. The solitons in BEC were ob-
served experimentally in [8–10]. Within the framework of
tomographic approach, the bright [11–13] and dark [14–18]
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solitons of Bose-Einstein condensate can be associated
with the probability distribution functions, which describe
completely the solitons in BEC. In the tomographic prob-
ability representation, the solutions to Gross-Pitaevskii
equation have the form of positive probability distribu-
tion functions. This means that one can associate with
solitons of BEC such characteristics as entropy, which is
determined by the probability distribution and use all the
mathematical tools of the probability theory.

The paper is organized as follows.
In Section 2 we review the Wigner-Moyal transform

and the nonlinear von Neumann equation, while in Sec-
tion 3 we present the tomographic form of linear von Neu-
mann equation and the tomographic form of the nonlinear
Schrödinger equation. In Section 4 we obtain the tomo-
graphic representation of Gross-Pitaevskii equation and
discuss solitons of Bose-Einstein condensates in the tomo-
graphic representation. Some conclusions and perspectives
are discussed in Section 5.

2 The Wigner-Moyal transform
and the nonlinear von Neumann equation

One should point out that there exist several nonlinear
generalizations of quantum mechanical evolution equa-
tions (see, for example, [19]).

Let us consider the following generalized nonlinear
Schrödinger equation (NLSE):

iα
∂ψ

∂s
= −α

2

2
∂2ψ

∂x2
+ U

[|ψ|2, x]ψ, (1)
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where s and x are the timelike and spacelike variables, and
ψ = ψ(x, s) is a complex wavefunction describing the sys-
tem evolution in the configuration space; U = U

[|ψ|2, x]
is an arbitrary real functional of |ψ|2 and α is a disper-
sion/diffraction coefficient.

When U corresponds to a linear potential, it is well
known that the system evolution can be described in the
phase space x, p, where p plays the role of the conjugate
momentum of x. This is done in terms of the so-called
Wigner-Moyal transform, introduced first by Wigner [20]
and later by Moyal [21], which is defined as (usually also
referred as to Wigner-Weyl map):

Wψ(x, p, s) =
1

2πα

∫
ρψ

(
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u
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2
, s

)
e

i
αpu du, (2)

where ρ is the density matrix defined as ρ(x
′
, x

′′
, s) =

ψ∗(x
′
, s)ψ(x

′′
, s).

The inverse of the Fourier transform (2) reads

ψ(x, s)ψ∗(x′, s) =
∫
Wψ
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)
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αp(x−x′) dp.

(3)
In particular, from (3) we have

|ψ(x, s)|2 =
∫
Wψ (x, p, s) dp, (4)

and

ψ∗(0, s)ψ(x, s) =
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Wψ

(x
2
, p, s

)
e

i
αpx dp. (5)

Suppose that ψ(0, s) is not equal to zero. Thus, for
pure states, given Wigner function one can reconstruct
the complex wave function up to a time-phase factor.

It can be shown that Wψ satisfies an equation which
is the analog of the Liouville equation
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Wψ(x, p′, s), (6)

which can be cast as the following von Neumann-Weyl
equation
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Wψ(x, p′, s) = 0. (7)

When U is a nonlinear potential, it is easy to prove that (6)
and (7) can be still valid and in particular they become
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Wψ(x, p, s) = 0. (9)

The nonlinear von Neumann equation (9) has been re-
cently used to describe the nonlinear dynamics of an
electromagnetic wavepacket through a nonlinear Kerr
medium with a memory nonlinear term [22] as well as the
longitudinal nonlinear collective dynamics of a charged-
particle bunch, within the framework of the Thermal Wave
Model, in circular accelerating machines with both re-
active (accounting for a Kerr-like nonlinear term) and
resistive (accounting for a memory-like nonlinear term)
parts of the coupling impedance [23]. In these studies,
the wavepacket/bunch have been considered as described
by the analog of a quantum pure state. A careful phase-
space modulational instability analysis, showing the exis-
tence of a Landau-type damping of the wavepacket/bunch
has been carried out [22,23]. In an approximate approach,
which takes into account a sort of analog of the quantum
mixed states, a phase-space modulational instability anal-
ysis (including the effects of the Landau-type damping) of
an ensemble of large-amplitude partially incoherent waves
has been carried out, as well, for surface gravity waves
in the ocean physics [24], for electromagnetic waves in
Kerr media [25] and for Langmuir envelopes in plasma
physics [26].

By virtue of (4), equations (8) and (7) become the fol-
lowing nonlinear integro-differential equation (nonlinear
von Neumann-Weyl equation)
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(11)

Equation (10) or (11) describes the phase-space evolution
of the system which, in the configuration space, is gov-
erned by the NLSE (1).

3 Tomographic form of (nonlinear)
von Neumann equation

Following [1,2,6,27] in this section we describe the to-
mographic map of arbitrary complex function ψ(x, s)
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(a wave function of BEC) onto nonnegative probabil-
ity distribution function w(X,µ, ν) called tomogram. The
map is given by the relation

w(X,µ, ν, s) =

1
2π|ν|α
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∫
ψ(y, s) exp

(
iµ

2να
y2 − iX

να
y

)
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2

. (12)

One can see that the tomogram has homogeneity property

w(λX, λµ, λν, s) =
1
|λ|w(X,µ, ν, s). (13)

For the normalized function ψ(x, s), the tomogram satis-
fies the normalization condition∫

w(X,µ, ν, s) dX = 1. (14)

The tomogram has the physical meaning of probability
distribution function of random variableX . This probabil-
ity distribution depends on two real parameters µ and ν.
These parameters label reference frame in the phase space
where the position coordinate X is considered [6]. Using
the real Wigner function [20]
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(15)
one can find, for any s, the tomogram in the form

w(X,µ, ν, s) =
∫
Wψ(q, p, s)δ(X − µq − νp) dq dp . (16)

The Wigner function can be reconstructed if one knows
the tomogram

Wψ(q, p, s) =∫
w(X,µ, ν, s) exp [i(X − µq − νp)]

dX dµ dν

(2π)2
. (17)

Using the relations written above one can prove that there
exist the following correspondence rules [1,28,29]:
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which can be used to obtain the differential equation for
tomogram from known differential equation for the wave
function of BEC. Analogous correspondence rules can be
obtained to construct the equation for Wigner function of
BEC state.

According to the results given in Section 2 the evo-
lution equation for Wigner function, in both linear and
nonlinear cases, can be cast in the following form:
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W (q, p, s) = 0. (19)

Thus, the correspondence rules (18) give the tomographic
form of the von Neumann equation
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(20)

In view of the physical meaning of the tomogram as the
probability distribution, one can introduce the entropy as-
sociated to solution of equation (20)

S(µ, ν, s) = −
∫
w(X,µ, ν, s)lnw(X,µ, ν, s) dX. (21)

This entropy is an additional characteristic of the solution
of the evolution equation.

4 Solitons of BEC in tomographic
representation

In this section, we consider the 3D Gross-Pitaevskii equa-
tion describing mean field of the BEC (see, f.i., [30]):

{
− �

2

2m
∇2 + gN |ψ(r, t)|2 +

1
2
m

[
ω2
⊥(x2 + y2) + ω2

zz
2
]}

× ψ(r, t) = i�
∂

∂t
ψ(r, t), (22)

where g = 4π2a/m, a is the ’s-wave’ scattering length,
m is the atomic mass, N is the number of atoms in the
condensate, and ω⊥ and ωz are axial and longitudinal os-
cillation frequencies of the atoms in the trapping potential,
respectively.

To look for a normalized stationary solution of equa-
tion (22), we write

ψ(r, t) ≡ ψa(r) exp
{
− i

�
Eat

}
.
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Thus, in the context of the variational method of solving
the stationary GP equation, the Gross-Pitaevskii energy-
functional, defined as

EGP [ψa] ≡
〈
ψa

∣∣∣Ĥ∣∣∣ψa〉 ,
has to be extremized (Ĥ being the Hamiltonian opera-
tor associated with Eq. (22)). An approximate variational
solution of the stationary GP equation, in the form of a
bright soliton, has been recently shown [13], i.e.

ψa(r) =
1√

2πσ2
⊥�z
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2 + y2

2σ2
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)
sech

(
z

�z

)
. (23)

This solution is important for explosive potential for which
ω2
z < 0. Here σ⊥ and �z are the variational parameters,

which describe the transverse and axial widths of the wave
function [13]. Notice that solution (23) is factorized into
two terms depending on the transverse (x, y) and lon-
gitudinal (z) coordinates. This allows us to use the to-
mographic approach developed in the previous sections
to analyze the longitudinally dependent part of the so-
lution (23). Indeed, the quasi-1D limit of the 3D Gross-
Pitaevskii equation gives the following equation [13]:[

− �
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]
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,

(24)
where g1D = 2a�ω⊥ is the renormalized quasi-1D cou-
pling constant. The normalized solution φ(z, t) for the 1D
Gross-Pitaeviskii equation can be written in the form of
bright-soliton-like wave, namely,

φ(z, t) =
1√
2�z

sech
(
z

�z

)
exp

(
− iµ0t

�

)
, (25)

where
µ0 = �ωz −N2g2

1Dm/(8�
2)

is the chemical potential and

lz = 2�
2/(m|g1D|N) .

The z-dependent part is essentially the longitudinal fac-
tor of the guessed variational ansatz for the stationary
solution (23). To determine the tomographic probability
distribution of the longitudinal motion let us use our equa-
tion (12) and let α = 1. Now, the complex function ψ(y, t)
is given in the above notation by equation (25), with the
substitution z → yL, where L =

√
�/mω⊥ is the normal-

ization length for the 1D Gross-Pitaevskii equation (24)
can be cast in the following dimensionless form:

i
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where τ = ω⊥t and

U [|φ|2, y] = 2aN |φ|2 +
1
2

(
ωz
ω⊥

)2

y2.

It should be pointed out that the soliton solution under
consideration is an approximate solution of the initial 3D
Gross-Pitaevskii equation.

The tomographic probability distribution w(X,µ, ν)
can be cast in the following dimensionless form:

w̃(X,µ, ν) ≡ Lw(X,µ, ν) =
1

2π|ν|

×
∣∣∣∣∣
∫ √

γ

2
sech (γy) exp

(
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2ν
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ν
y

)
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2

,

(27)

where the dependence on the parameter

γ = L/�z = Lmg1DN/(2�
2)

governing the width of the longitudinal soliton distribu-
tion is shown. Note that the time independence of the to-
mogram (27) is due to the special form of solution (25). In
fact, once (25) is substituted in (12), the time-dependent
exponential factor automatically disappears.

To illustrate the behaviour of the tomogram, we take
µ = cos θ, ν = sin θ.

The 3D plot of the tomogram w̃(X, cos θ, sin θ) of the
bright-soliton-like solution is displayed in the X-θ plane in
Figure 1a, while the corresponding density plot is shown in
Figure 1b. The spread of the tomographic map is basically
governed by the dimensionless parameter γ = L/�z. The
value of γ ≈ 0.82 in Figure 1 is adopted from experimental
conditions reported in [31], where L = 1.4 µm and the
axial width distribution �z = 1.7 µm.

5 Conclusions

To conclude, we summarize the main result of the paper.
We obtained the probability description of BEC states.

It means that we mapped, e.g., the BEC solitons onto
probability distribution functions, which contain the com-
plete information on the solitons. It is quite unexpected
result that arbitrary state of BEC can be associated to
the standard probability distribution and, since the tomo-
graphic map employed is invertable, the space-time de-
pendence of the soliton can be reconstructed (up to the
phase factor) if one knows the introduced tomographic
probability distribution of the soliton.

We get the tomographic probability form of Gross-
Pitaevskii equation as well as Moyal form of this equa-
tion. The equation in the probability representation can
be considered as a nonlinear analog of the classical Fokker-
Planck equation for classical stochastic process. It is wor-
thy to point out that the nonlinear dynamical equations
like nonlinear Schrödinger equation and, in particular, the
Gross-Pitaevskii equation, can be rewritten (though in a
more complicated form) for the standard positive proba-
bility distribution obeying to analogs of classical nonlin-
ear Fokker-Planck-type equations. Up to our knowledge,
equations of this kind have not been studied in classical
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Fig. 1. (a) Tomogram of the bright soliton-like solution as
function of X and θ; (b) Density plot in the (X,θ) plane. For
both plots γ = L/�z ≈ 0.82 (L = 1.4 µm, �z = 1.7 µm),
according to the BEC experimental conditions reported in [31].

statistics. Also the Moyal form of the nonlinear dynam-
ical equations is another new aspect of BEC dynamics
discussed in our paper. A potential usefulness of the sug-
gested probability representation for BEC solitons is the
possibility to apply well-elaborated theorems of probabil-
ity theory to study such properties as propagation and
asymptotics of the probabilities in more complicated sit-
uations.

We have studied tomograms of specific soliton solution
for the Gross-Pitaevskii equation.

One can extend the tomographic and Moyal descrip-
tions also to other types of BEC states like kink states
studied in [32].

This study was supported by Universitá “Federico II” di Napoli
and the Russian Foundation for Basic Research under Projects
Nos. 01-02-17745 and 03-02-16408.
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