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a b s t r a c t

Tomograms are obtained as probability distributions and are used
to reconstruct a quantum state from experimentallymeasured val-
ues. We study the evolution of tomograms for different quantum
systems, both finite and infinite dimensional. In realistic exper-
imental conditions, quantum states are exposed to the ambient
environment and hence subject to effects like decoherence and
dissipation, which are dealt with here, consistently, using the for-
malism of open quantum systems. This is extremely relevant from
the perspective of experimental implementation and issues re-
lated to state reconstruction in quantum computation and com-
munication. These considerations are also expected to affect the
quasiprobability distribution obtained from experimentally gener-
ated tomograms and nonclassicality observed from them.
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1. Introduction

A quantum state can be characterized by a number of probability and quasiprobability distribu-
tion functions [1]. The quasiprobability distributions are not true probability distributions as most of
them can have nonpositive values. Interestingly, this nonpositivity can be viewed as a signature of
nonclassicality or quantumness. Specifically, the negative values of the Wigner [2] and P [3,4] func-
tions serve as witnesses of nonclassicality. Further, zeros of Q function [5] also serve as witness of
nonclassicality. As there does not exist any straight forward prescription for direct measurement of
these quasiprobability distributions, several efforts have been made to construct measurable proba-
bility distributions that can be used to uniquely construct either all or some of these quasiprobability
distributions. Such measurable probability distributions are referred to as tomograms [6–9]. In other
words, the tomogram is a scheme for measuring a quantum state by using a representation in one to
one correspondence with the true probability distribution rather thanwith a quasidistribution [10]. A
relationship between a tomogram and a quasidistribution function, such as the Wigner function, can
be established for both continuous and discrete systems [11,12]. Specifically, in Ref. [11] it was shown
that quasiprobability distributions (P , Q , andWigner functions) can be uniquely determined in terms
of probability distributions for the rotated quadrature phase which can be viewed as an optical tomo-
gram of the state. Similarly, in Ref. [12] it was shown that for finite dimensional phase states, discrete
Wigner functions and tomograms are connected by a discretization of the continuous variable Radon
transformation and was referred to as the Plato transformation.

In the recent past, a few successful attempts have been made to measureWigner function directly
in experiments [13,14], but the methods adopted are state specific. The same limitation is also valid
for the theoretical proposals [15] for the measurement of Wigner function. Further, optical homo-
dyne tomography has been employed for the experimental measurement of the Wigner functions
of vacuum and squeezed states in [16,17], while distributions corresponding to Pegg–Barnett and
Susskind–Glogower phase operators were also obtained in [17]. An experimental measurement of
the P , Q and Wigner quantum phase distributions for the squeezed vacuum state has been reported
in [18]. Precision of homodyne tomography technique was compared with conventional detection
techniques in [19]. A number of alternativemethods of tomography have also been proposed [20–22],
and exploited to obtain phase distributions likeWigner and Q functions [23]. In [24] continuous vari-
able quantum state tomography was reviewed from the perspective of quantum information. In brief,
there does not exist any general prescription for direct experimental measurement of the Wigner
function and other quasidistribution functions. In practice, to detect the nonclassicality in a system
the Wigner function is obtained either by photon counting or from experimentally measured tomo-
grams [15]. Thus, tomograms are very important for the identification of nonclassical character of
a physical system. In another line of studies, simulation of quantum systems have been performed
using tomography. For example, tomograms were used for simulation of tunneling [25–27] and mul-
timode quantum states [28]. Attempts have also been made to understand the tomogram via path
integrals [29,30].

Furthermore, how to reconstruct a quantum state from experimentally measured values is of
prime interest for both quantum computation [13] and communication [31]. Specifically, in Ref. [13]
it is strongly established that tomography and spectroscopy can be interpreted as dual forms of
quantum computation, and in Ref. [31], quantum teleportation was experimentally performed over a
distance of 143 km and the quality of teleportation was verified with the help of quantum process
tomography (QPT) of quantum teleportation without feed-forward. Here it would be apt to note
that QPT is an aspect of quantum state tomography in which a quantum process is obtained as a
trace preserving positive linear map [32]. In the recent past, quantum process tomography has been
discussed from the perspective of open quantum system effects [33–35]. A novel method of complete
experimental characterization of quantum optical processes was introduced in [36]. It was further
developed in [37,38] and extended to characterization of N-modes in [39]. In [40], QPT was applied to
the characterization of opticalmemory based on electromagnetically induced transparencywhile [41]
and [42] were devoted to QPT of the electromagnetic field and conditional state engineering,
respectively. Quantum state tomography has its applications in quantum cryptography as well [43].
Specifically, in Ref. [43] an interesting protocol of quantum cryptography was proposed in which
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eavesdropping in the quantum channel was checked by requiring consistency of outcome of the
tomography with the unbiased noise situation. Keeping these facts in mind, we aim to construct
tomograms for a number of physical systems of practical relevance (mostly having applications in
quantum computation and communication) and investigate the effects of various types of noise on
them.

From the experimental perspective, a quantum state always interactswith its surroundings. Hence,
the evolution of the corresponding tomogram after taking into account the interaction of the quantum
state with its environment should be considered. This can be achievedwith the open quantum system
formalism [44–47]. Specifically, both purely dephasing (QND) [48] and dissipative [49] open quantum
system effects have been studied here. Interestingly, both these effects have also been experimentally
realized in the recent past [50,51]. In Ref. [52], a systematic study of quasidistribution functions was
made for a host of interesting states under general open system evolutions.

Here, we set ourselves the task of obtaining the tomograms for various finite and infinite
dimensional quantum systems in different open quantum system scenarios. For finite dimensional
spin states, the tomogram is the distribution function of the projections of the spin on an arbitrary
axis, characterized by Euler angles, and can be obtained from the diagonal elements of the rotated
density matrix, while for continuous variable systems, such as the radiation field, the analog would
be the homodyne probability. It follows from general group theoretical arguments that, making use of
unitary irreducible square integrable representation of the tomographic group under consideration,
a unified tomographic prescription can be developed for both finite dimensional and continuous
variable systems [53]. Tomograms for spin states have been developed both as projections on an
arbitrary axis [54] as well as by using a discrete variable analog of symplectic tomography [55].
Tomograms of optical systems have beenwell studied in the past [6,11,24,56,57]. In Ref. [58] quantum
state tomography was used to determine the degree of non-Markovianity in an open system. Further,
thermal noise is used in tomography (for reconstruction of photon number distributions) as a
probe [59].

The paper is organized as follows. In Section 2, tomograms of single spin- 12 (qubit) atomic coherent
state under purely dephasing (QND) and dissipative evolution are obtained. Further, the tomogram
of two spin- 12 (qubit) quantum state is studied in Section 3 under the influence of a vacuum bath.
This is followed by a tomogram for a general spin-1 pure state in Section 4. The tomograms of finite
dimensional number-phase states under open quantum system evolution are discussed in Section 5.
This is illustrated by a specific example of a three-level quantum (qutrit) system evolving under a
spontaneous emission channel. In Section 6, we discuss the tomogram of an infinite dimensional
system, the ubiquitous dissipative harmonic oscillator. We conclude in Section 7.

2. Tomograms of single spin- 12 states

In this section, we study the tomograms for single spin- 12 (qubit) atomic coherent state evolving
under two general noise models, i.e., pure dephasing (QND) and dissipative squeezed generalized
amplitude damping (SGAD) evolution, incorporating the effects of dissipation, decoherence and bath
squeezing.

2.1. QND evolution

The master equation of a quantum state under QND evolution [48] is

ρ̇s
nm (t) =


−

i
h̄
(En − Em)+ iη̇ (t)


E2
n − E2

m


− (En − Em)2 γ̇ (t)


ρs
nm (t) , (1)

where En’s are the eigenvalues of the system Hamiltonian in the system eigenbasis |n⟩,

η (t) = −


k

g2
k

h̄2 ω2
k

sin (ωkt) ,
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and

γ (t) =
1
2


k

g2
k

h̄2 ω2
k

coth

βh̄ωk

2

 eiωkt − 1

cosh (rk)+


e−iωkt − 1


sinh (rk) e2iΦk

2 ,
with β =

1
kBT

. Here, kB is the Boltzmann constant, rk and Φk are the bath squeezing parameters and
gk is the system–bath coupling coefficient. The initial density matrix for the atomic coherent state is
given by

ρs (0) = |α, β⟩⟨α, β|, (2)

where the atomic coherent state is given by

|α, β⟩ =

j
m=−j


2j

j + m

1/2

sin
α
2

j+m
cos

α
2

j−m
|j,m⟩e−i(j+m)β . (3)

The different elements of the density matrix in Eq. (2) at time t under QND evolution becomes

ρs
jm,jn (t) = e−iω(m−n)tei(h̄ω)

2(m2
−n2)η(t)e−(h̄ω)2(m−n)2γ (t)ρs

jm,jn (0) , (4)

with ρs
jm,jn (0) = ⟨j,m|ρs (0) |j, n⟩. Considering the initial state of the system as atomic coherent state,

i.e., using Eq. (3), different elements of the density matrix in Eq. (4) at time t = 0 are

ρs
jm,jn (0) =


2j

j + m

1/2 
2j

j + n

1/2

ei(n−m)β sin
α
2

2j+m+n
cos

α
2

2j−m−n
. (5)

Using Eq. (5) as the initial density matrix elements in Eq. (4), we can write all the elements of the
density matrix at time t as

ρs
jm,jn (t) =


2j

j + m

1/2 
2j

j + n

1/2

e−iω(m−n)tei(h̄ω)
2(m2

−n2)η(t)

× e−(h̄ω)2(m−n)2γ (t) sin
α
2

2j+m+n
cos

α
2

2j−m−n
ei(n−m)β . (6)

To obtain a tomogram of a spin- 12 atomic coherent state under QND evolution, we can express the
density matrix in terms of Wigner–Dicke states as

ρ(j) ≡ ρ(j) (t) =

j
m,m′=−j

ρ
(j)
m,m′ |j,m⟩⟨j,m′

|. (7)

The different elements of this density matrix ρ(j)m,m′ = ⟨m|ρ(j)|m′
⟩ can be obtained using Eq. (6), with

m, n → m, m′, for j =
1
2 , m, m

′
= ±

1
2 . Subsequently, the density matrix is obtained as

ρ(1/2) =

 sin2
α
2

 1
2
e−iωte−(h̄ω)2γ (t) sinαe−iβ

1
2
eiωte−(h̄ω)2γ (t) sinαeiβ cos2

α
2


 . (8)

We can easily check that the trace of the density matrix

ρ(1/2)


is one, i.e.,

1/2
m=−1/2 ρ

(1/2)
m,m = 1.

Further, the tomogram of this state can be expressed as [9]

ω

m1,α,β,γ  =

j
m=−j

j
m′=−j

D(j)m1,m

α,β,γ  ρ(j)m,m′D
(j)∗
m1,m′

α,β,γ  , (9)

where D(j)m,m′

α,β,γ  is the Wigner D-function

D(j)m,m′

α,β,γ  = e−imαd(j)m,m′

β e−im′γ , (10)
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and the notation used here is consistent with that in Ref. [60]. Here,α,β , andγ are Euler angles ≡ φ,
θ , and ψ , with φ,ψ ∈ [0, 2π ], and θ ∈ [0, π ], and

d(j)m,m′

β =


(j + m)! (j − m)!
(j + m′)! (j − m′)!

1/2 
cos

β
2

m+m′ 
sin

β
2

m−m′

P(
m−m′,m+m′)

j−m


cosβ , (11)

where P (a,b)n (x) are Jacobi polynomials. A tomogram is the spin projection onto an arbitrary, rotated,
axis. The physical significance of the D-function is its connection to the process of rotation and can be
illustrated by

⟨j,m1|R
α,β,γ  |j,m′

1⟩ = D(j)m1,m′
1

α,β,γ  ,
⟨j,m′

2|R
Ď
α,β,γ  |j,m1⟩ = D∗(j)

m1,m′
2

α,β,γ  . (12)

Here, R
α,β,γ  stands for the operation of rotation about an axis whose orientation is specified byα, β , andγ . Using the different values ofm and m′, we can obtain various Wigner D-functions as

D(1/2)1
2 ,−

1
2

α,β,γ  = − sin
β
2


e−

i
2 (α−γ ),

D(1/2)1
2 ,

1
2

α,β,γ  = cos
β
2


e−

i
2 (α+γ ),

D(1/2)
−

1
2 ,−

1
2

α,β,γ  = cos
β
2


e

i
2 (α+γ ),

D(1/2)
−

1
2 ,

1
2

α,β,γ  = sin
β
2


e

i
2 (α−γ ).

(13)

Using the first two relations of Eqs. (13) and (8), the first component of the tomogram can be obtained
from Eq. (9) as

ω


1
2
,α,β,γ ≡ ω1 = cos2

β
2


− cosβ cos2

α
2


−

1
2
sinβ sinα cos (ωt + β +γ ) e−(h̄ω)2γ (t). (14)

From Eq. (14), it can be inferred that the tomogram is free from Euler angleα, and consequently is a
function ofβ andγ only, or f (β,γ ). It is worth mentioning here thatγ and γ (t) are two different
parameters, the former being an Euler angle while the latter is responsible for decoherence. The
variation of the tomogram is given in Fig. 1 with time, for the different temperatures. For the second
component of the tomogram with m1 = −

1
2 , using last two relations of Eq. (13) and substituting

Eq. (8) in Eq. (9), we obtain

ω


−

1
2
,α,β,γ ≡ ω2 = cos2

β
2


− cosβ cos2

α
2


+

1
2
sinβ sinα cos (ωt + β +γ ) e−(h̄ω)2γ (t). (15)

We can check the validity of the tomogram obtained by verifying that

ωi = ω1 + ω2 = 1.

Interestingly, we can see that the knowledge of one of the components of the tomogram is enough to
reconstruct the whole state. Keeping this in mind, we have only shown the variation of ω1 in Fig. 1 as
ω2 = 1 − ω1.

In Fig. 1, we can easily see the expected behavior of tomogram with increase in temperature for
zero bath squeezing. Specifically, with increase in temperature, the tomogram tends to randomize
more quickly towards probability 1/2. Fig. 2 further establishes the effect of the environment on
the tomogram. Particularly, Fig. 2b brings out the oscillatory nature of tomogram with time while
temperature tends to randomize it. Similarly, Fig. 2a and c show the dependence of the tomogram on
Euler angles and the atomic coherent state parameters, respectively.
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Fig. 1. (Color online) The variation of the tomogram with time (t) for single spin- 1
2 atomic coherent state in the presence

of QND noise with bath parameters γ0 = 0.1, ωc = 100, squeezing parameters r = 0, a = 0, and ω = 1.0 and
α =

π
2 , β =

π
3 ,
β =

π
3 , γ =

π
4 , in the units of h̄ = kB = 1. The smooth (blue) line, dashed (red) line and dot-dashed

(magenta) line correspond to the tomogram with time for different temperatures T = 0, 1 and 2, respectively.

2.2. Dissipative SGAD channel

Master equation for the dissipative evolution of a given state in the squeezed generalized
amplitude damping (SGAD) channel is given by [49]

d
dt
ρs (t) = −

iω
2


σz, ρ

s (t)

+ γ0 (N + 1)


σ−ρ

s (t) σ+ −
1
2
σ+σ−ρ

s (t)−
1
2
ρs (t) σ+σ−


+


σ+ρ

s (t) σ− −
1
2
σ−σ+ρ

s (t)−
1
2
ρs (t) σ−σ+


γ0N

− γ0Mσ+ρ
s (t) σ+ − γ0M∗σ−ρ

s (0) σ−. (16)
The density matrix for a quantum state under a dissipative SGAD channel at time t can be obtained,
from the above equation, as

ρs (t) =
1
4
ρs (0) f+ +

1
4
σzρ

s (0) σz f− −
1
4
ρs (0) σzg− −

1
4
σzρ

s (0) g+ − γ0
sinh


α′t


α′
e−

γ β t
2

×

Mσ+ρ

s (0) σ+ + M∗σ−ρ
s (0) σ−


+


1 − e−γ β t

 γ+

γ β
σ−ρ

s (0) σ+ +
γ−

γ β
σ+ρ

s (0) σ−


, (17)

where f± = {1 + e−γ β t
± 2 cosh(α′t)e−

γβ t
2 }, g± = {

γ

γ β
(1 − e−γ β t) ±

2iω
α′ sinh(α′t)e−

γ β t
2 }, γ+ =

γ0(N + 1), γ− = γ0N , γ β = γ+ + γ−, γ = γ+ − γ− = γ0, α′
=


γ 2
0 |M|2 − ω2; and

σ+ = |1⟩⟨0|, σ− = |0⟩⟨1|,
σz = σ+σ− − σ−σ+

= |1⟩⟨1| − |0⟩⟨0|
= |e⟩⟨e| − |g⟩⟨g|.

Also,
σz |g⟩ = −|g⟩, σz |e⟩ = |e⟩;
σ+|g⟩ = |e⟩, σ+|e⟩ = 0;
σ−|g⟩ = 0, σ−|e⟩ = |g⟩.

Here, γ0 is the spontaneous emission rate, M = −
1
2 {2Nth + 1} exp (iφ) sinh (2r), and N =

Nth

cosh2 (r)+ sinh2 (r)


+ sinh2 (r) , where Nth = 1/ {exp (h̄ω/kBT )− 1} being the Planck dis-

tribution, and r and the bath squeezing angle (φ) are the bath squeezing parameters. The initial state,
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Fig. 2. (Color online) The dependence of the tomogram on various parameters is depicted for single spin- 1
2 atomic coherent

state in the presence of QND noise with bath parameters γ0 = 0.1, ωc = 100, squeezing parameter a = 0, and ω = 1.0 in the
units of h̄ = kB = 1. In (a) the tomogram is shown as a function ofβ andγ with α =

π
2 , β =

π
3 , and r = t = T = 1; while (b)

exhibits the variation of the tomogram with time and temperature for r = 0 and α =
π
2 , β =

π
3 ,
β =

π
3 , γ =

π
4 . Finally, the

last plot (c) shows the dependence of the tomogram on the atomic coherent state parameters α and β withβ =
π
3 , γ =

π
4 at

time t = 1 for bath squeezing parameter r = 1 at T = 1.

as for the tomogram of a quantum state under QND evolution, is the atomic coherent state given in
Eq. (2). Using Eq. (17), the density matrix can be written as

ρs (t) =



1
2

ρs (t)
1
2

 
1
2

ρs (t)
−1

2



−

1
2

ρs (t)
1
2

 
−

1
2

ρs (t)
−1

2


 , (18)

where the various terms are
1
2

ρs (t)
1
2


= sin2

α
2


e−γ β t

+
γ−

γ β


1 − e−γ β t


,

1
2

ρs (t)
−1

2


=

1
2
sinα


cosh


α′t

−

iω
α′

sinh

α′t


e−iβ
−
γ0M
α′

sinh

α′t

eiβ

e−

γ β t
2 ,

−
1
2

ρs (t)
1
2


=

1
2
sinα


cosh


α′t

+

iω
α′

sinh

α′t


eiβ

−
γ0M∗

α′
sinh


α′t

e−iβ


e−

γ β t
2 ,

−
1
2

ρs (t)
−1

2


= cos2

α
2


e−γ β t

+
γ+

γ β


1 − e−γ β t


,

and the density matrix can be seen to be normalized as
1/2

m=−1/2⟨m|ρs (t) |m⟩ = 1.
The tomogram of a state evolving in a dissipative SGAD channel, in analogy to the QND case, can be

obtained by expanding the density matrix in the basis of the Wigner–Dicke states, as in Eq. (7). Using
Eq. (9), the first two relations of Eqs. (13) and (18), the first component of the tomogram is

ω


1
2
,α,β,γ ≡ ω1 = sin2

β
2


cos2

α
2


e−γ β t

+
γ+

γ β


1 − e−γ β t


+ cos2

β
2


sin2

α
2


e−γ β t

+
γ−

γ β


1 − e−γ β t


−

1
2
sinβ e−iγ 1

2
sinαe−iβe−

γβ t
2


cosh


α′t

−

iω
α′

sinh

α′t


−
γ0M
2α′

sinα sinh

α′t

eiβe−

γ β t
2


+ c.c.


. (19)
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Fig. 3. (Color online) The tomogram varying with time (t) is shown for a single spin- 1
2 atomic coherent state in the presence

of the SGAD noise for bath squeezing angle φ = π in the units of h̄ = kB = 1, with ω = 1.0, γ0 = 0.25, and
α =

π
2 , β =

π
3 ,
β =

π
3 , γ =

π
4 . The smooth (blue) line, dashed (red) line and dot-dashed (magenta) line correspond to the

tomogramwith time for different temperatures and squeezing parameters T = 1, 10 and 10, and r = 0, 0 and 1, respectively.

Again, we can check the validity of the analytic expression of the tomogram in the absence of open
system effects, i.e., by considering γ0 = γ = 0, γ+ = γ− = 0 = γ β , which leads to α′

= iω, we have

ω


1
2
,α,β,γ = cos2

β
2


− cosβ cos2

α
2


−

1
2
sinβ sinα cos (ωt + β +γ ) , (20)

which is identical to the QND case, i.e., Eq. (14), with γ (t) = 0. Similarly, using Eq. (9), the last two
relations of Eqs. (13) and (18), we obtain the second component as

ω


−

1
2
,α,β,γ ≡ ω2 = cos2

β
2


cos2

α
2


e−γ β t

+
γ+

γ β


1 − e−γ β t


+ sin2

β
2


sin2

α
2


e−γ β t

+
γ−

γ β


1 − e−γ β t


+

1
2
sinβ e−iγ 1

2
sinαe−iβe−

γ β t
2


cosh


α′t

−

iω
α′

sinh

α′t


−
γ0M
2α′

sinα sinh

α′t

eiβe−

γ β t
2


+ c.c.


. (21)

Similar to the first tomogram of the dissipative SGAD channel, we can check the solution in the
absence of the open system effects which leads to α′

= iω. This can be seen to be the same as the
corresponding QND case, i.e., Eq. (15), with γ (t) = 0

ω


−

1
2
,α,β,γ = cos2

β
2


− cosβ sin2

α
2


+

1
2
sinβ sinα cos (ωt + β +γ ) . (22)

We can also check the validity of the tomogram as in the QND case by

ωi = ω1 +ω2 = 1. Hence, as

before, one component of the tomogramwould be enough to recover all the information. This is why,
in the plots, we only show the first component of the tomogram. The other component can be easily
obtained from it.

The variation of tomogram with different parameters is shown in Figs. 3 and 4. Fig. 3 exhibits the
randomization of the tomogramwith increase in temperature. This fact can be observed in the smooth
(blue) and dashed (red) lines. However, an interesting behavior is observed here with respect to bath
squeezing. It can be seen that it takes relatively longer to randomize the tomogram in presence of
squeezing than in its absence, temperature remaining same, as illustrated by a comparison between
the dot-dashed (magenta) and dashed (red) line. This fact, in turn, establishes that squeezing is a useful
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Fig. 4. (Color online) The tomogram for single spin- 1
2 atomic coherent state in the presence of SGAD noise is shown as a

function of squeezing parameters r and φ with α =
π
2 , β =

π
3 ,
β =

π
3 , γ =

π
4 , and ω = 1.0, γ0 = 0.25, in the units of

h̄ = kB = 1 for T = 1 at time t = 1.

quantum resource. This behavior is further elaborated in Fig. 4, where the effect of bath squeezing
can be observed and is consistent with the quadrature behavior of squeezing. This beneficial effect
of squeezing is not observed for evolution under QND channel. From the present analysis, it could be
envisaged that a tomographic connection could be established between the state, under consideration
and the generic open system interaction evolving it.

3. Tomogram of two spin- 12 (qubit) states

Various two-qubit tomography schemes have been proposed in the recent past [61–65].
Specifically, the tomogram for two spin- 12 (qubit) states can be obtained using the star product
scheme [61,62]. In [64], two-qubit states were analyzed from the perspective of tomographic causal
analysis, while in [65], an interesting connection between tomographic construction of two-qubit
states to aspects of quantum correlations such as discord and measurement induced disturbance was
developed.

For a two qubit state ρ one can obtain the tomogram as

ω (m1,m2) = Tr [ρ {Q1 (m1)⊗ Q2 (m2)}] , (23)

where Qi (mi) = UĎ
i |mi⟩ ⟨mi|Ui, and mi = ±

1
2 , while the unitary matrices Ui are

Ui =

 cos
βi

2
exp


i (αi +γi)

2


sin

βi

2
exp


i (αi −γi)

2


− sin

βi

2
exp


−

i (αi −γi)
2


cos

βi

2
exp


−

i (αi +γi)
2




for i ∈ {1, 2}. Hence, the tomogram of the two qubit state can be written as the diagonal elements ofρ,whereρ = (U1 ⊗ U2) ρ (U1 ⊗ U2)
Ď .

3.1. Tomogram of two qubits under dissipative evolution in a vacuum bath

Now,we construct the tomogramof a two qubit state in a vacuumbath under dissipative evolution,
as discussed in Ref. [66]. The initial state of the system is consideredwith one qubit in the excited state
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|e1⟩ and the other in the ground state |g2⟩, i.e., |e1⟩ |g2⟩. The reduced density matrix of the system of
interest, here the two qubits, is

ρ (t) =

ρee (t) ρes (t) ρea (t) ρeg (t)
ρ∗

es (t) ρss (t) ρsa (t) ρsg (t)
ρ∗

ea (t) ρ∗

sa (t) ρaa (t) ρag (t)
ρ∗

eg (t) ρ∗

sg (t) ρ∗

ag (t) ρgg (t)

 , (24)

where the analytic form of all the elements of the density matrix is given in the Appendix.
The tomogram can be thought of as a tomographic-probability vector ω = [ω1, ω2, ω3, ω4]T (here

T corresponds to transpose of the vector), where each component can be expressed analytically as

ω1 (t) =
1
4


4ρee cos2

β1

2
cos2

β2

2
+ 4ρgg sin2

β1

2
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2
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
1 − cosβ1 cosβ2


− (ρaa − ρss) sinβ1 sinβ2 cos (γ1 −γ2)
+


ρsa

cosβ1 − cosβ2 − i sinβ1 sinβ2 sin (γ1 −γ2)

+
√
2

(−ρea + ρes) cos2
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2
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sin2
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2


sinβ1 exp (iγ1)

+ sinβ2 exp (iγ2) (ρea + ρes) cos2
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2
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
sin2

β1

2


+ exp (iγ1 + iγ2) ρeg sinβ1 sinβ2 + c.c.


, (25)

ω2 (t) =
1
4


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β1

2
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β2

2
+ 4ρgg sin2
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2
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
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
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+


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cosβ1 + cosβ2 + i sinβ1 sinβ2 sin (γ1 −γ2)

+
√
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, (26)

ω3 (t) =
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√
2

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
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
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2
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β2

2


sinβ1 exp (iγ1)

+ sinβ2 exp (iγ2) (ρea + ρes) sin2
β1

2
−

ρag − ρsg


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2


− exp (iγ1 + iγ2) ρeg sinβ1 sinβ2 + c.c.


, (27)
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a b

c d

Fig. 5. (Color online) Various components of the tomogram changing with time are shown in (a)–(d) for the two-qubit state,
in the presence of vacuum bath, with β1 =

π
3 ,
β2 =

π
4 , γ1 =

π
3 , γ2 =

π
4 and the inter-qubit spacing r12 = 0.05 (2.0)

corresponding to smooth blue (red dashed) line.

and

ω4 (t) =
1
4


4ρee sin2
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2
sin2
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2
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2
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2
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− (ρaa − ρss) sinβ1 sinβ2 cos (γ1 −γ2)
+


− ρsa


cosβ1 − cosβ2 + i sinβ1 sinβ2 sin (γ1 −γ2)

+
√
2


−

ρag + ρsg


cos2

β2

2
+ (ρea − ρes) sin2

β2

2


sinβ1 exp (iγ1)

+ sinβ2 exp (iγ2) − (ρea + ρes) sin2
β1

2
+

ρag − ρsg


cos2

β1

2


− exp (iγ1 + iγ2) ρeg sinβ1 sinβ2 + c.c.


. (28)

Here, ρij are the elements of the matrix in Eq. (24) and are given in the Appendix. For simplicity
of notations the time dependence in the arguments of matrix elements is omitted. Similar to the
tomograms for single spin- 12 states the tomogram obtained here is also free fromα.

As in the cases of single qubit tomograms, we can again verify that the tomogram obtained here
satisfies the condition


ωi = ρee + ρgg + ρaa + ρss,which is the trace of the density matrix given in

Eq. (24), and hence equal to one.
For the case of identical qubits considered here, we take the wave-vector and mean frequency to

be k0 = ω0 = 1, the spontaneous emission rate Γj = 0.05 and µ̂ · r̂ij = 0. Here, µ̂ is the unit vector
along the atomic transition dipolemoment and r̂ij is the inter-atomic distance. Further, the initial state
of the system is taken to be ρee (0) = ρgg (0) = ρes (0) = ρea (0) = ρeg (0) = ρsg (0) = ρag (0) = 0,
and ρss (0) = ρaa (0) = ρsa (0) = 0.5.

The variation of all four components of the tomogram is shownwith different parameters in Figs. 5
and 6. In Fig. 5, large oscillations can be observed for small interqubit spacing, which is consistent
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a b

c d

Fig. 6. (Color online) (a)–(d) depict the tomogram for the two qubit state, interacting with a vacuum bath, as a function of the
inter-qubit spacing at t = 1 (smooth blue line), and t = 5 (red dashed line). For all the plotsβ1 =

π
3 ,
β2 =

π
4 , γ1 =

π
3 ,γ2 =

π
4 .

with the earlier observations in a plethora of scenario [52,66,67]. Fig. 6 further demonstrates similar
behavior for small interqubit spacing. For small interqubit spacing the ambient environment opens
up a channel between the qubits resulting in enhancement of oscillations.

4. Tomogram of single spin-1 state

The tomograms for finite spin states have been considered, among others, in Refs. [9,54,68,69]. In
continuation with the theme of this work, we take up an arbitrary spin-1 state

ψ (1)
= N

a
b
c


, (29)

where N =
1√

|a|2+|b|2+|c|2
is the normalization factor. The corresponding density matrix is

ρ(1) = |N|
2

|a|2 ab∗ ac∗

a∗b |b|2 bc∗

a∗c b∗c |c|2

 . (30)

Here, we restrict ourselves to obtaining the tomogram for the state (30), without considering open
system effects. Using Eqs. (9)–(11), all the Wigner D-functions for the tomogram can be calculated as
before. Using Eqs. (9) and (30), ω


1,α,β,γ  can be written as

ω

1,α,β,γ  ≡ ω1 = |N|

2


|a|2

4


1 + cosβ2 +

|b|2

2
sin2β +

|c|2

4


1 − cosβ2

+


−

ab∗eiγ
2
√
2


sinβ 1 + cosβ+

ac∗e2iγ
4

sin2β
−

bc∗eiγ
2
√
2

sinβ 1 − cosβ+ c.c.

. (31)
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Fig. 7. (Color online) The dependence of all three components of tomogram for single spin-1 state with Euler angles for
a = b = c =

1
√
3
.

Similarly, ω

0,α,β,γ  can be obtained as

ω

0,α,β,γ  ≡ ω0 = |N|

2


|a|2

2
sin2β + |b|2 cos2β +

|c|2

2
sin2β

+


ab∗eiγ
2
√
2

sin 2β −
ac∗e2iγ

2
sin2β −

bc∗eiγ
2
√
2

sin 2β + c.c.

. (32)

Also, ω

−1,α,β,γ  is

ω

−1,α,β,γ  ≡ ω−1 = |N|

2


|a|2

4


1 − cosβ2 +

|b|2

2
sin2β +

|c|2

4


1 + cosβ2

+


ab∗eiγ
2
√
2

sinβ 1 − cosβ+
ac∗e2iγ

4
sin2β

+
bc∗eiγ
2
√
2

sinβ 1 + cosβ+ c.c.

. (33)

Interestingly, the tomogram obtained for a general spin-1 quantum state is also free fromα as for
spin- 12 cases discussed above. Further, it can be checkedhere that the tomogramsatisfies the condition
ω1 + ω0 + ω−1 = 1. For a = 1, b = 0 = c , the tomogram, obtained here, is seen to be consistent
with the results reported earlier [69],

ω

1,α,β,γ  =


1 + cosβ2

4
,

ω

0,α,β,γ  =


1 − cos2β

2
,

ω

−1,α,β,γ  =


1 − cosβ2

4
.

(34)

The variation of all three components of the tomogram with Euler angles is given in Fig. 7. The
peaks in one component have corresponding valleys in other components of the tomogram, which
are manifestations of normalization of the tomogram to one.

5. Tomogram of a finite dimensional state

In this section, we discuss tomography of finite dimensional states. The tomogram of a finite
dimensional state can be defined as [12]

ω (m, t, q) =

d−1
χ=0

W (tm − qχ, qm + tχ) , (35)
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where W (χ,m) is the discrete Wigner function with integers t and q, depicting complementarity
between number m (denoting angular momentum) and phase χ of finite dimensional states. Here,
the discrete Wigner function is expressed as

W (χ,m) =
1
d

d−1
Θ=0

exp

4π i
d

mΘ


⟨χ −Θ| ρ |χ +Θ⟩ . (36)

It would be apt here to mention that the phase states |χ⟩ are periodic, such that |χ + d⟩ = |χ⟩. A
general d dimensional density matrix can be written in Weyl operator basis as [70]

ρ =
1
d

I +

d−1
n,m=0

bnmUnm (37)

with b00 = 0 and Unm =
d−1

α=0 exp
 2π i

d αn

|α⟩ ⟨α + m|. We make use of the periodicity of phase

states in computations involving Unm.
Up to now the treatment is applicable to any generic finite dimensional system. Here, for

concreteness, we concentrate on an important finite dimensional system, viz. a qutrit with d = 3. We
study the effect of spontaneous emission (SE) channel [71] on the qutrit. SE is a dissipative process
which can be modeled by the following Kraus operators

K0 =

1 0 0
0 e−

η1t
2 0

0 0 e−
η2t
2

 ,
K1 =

0
√
1 − e−η1t 0

0 0 0
0 0 0

 ,
K2 =

0 0
√
1 − e−η2t

0 0 0
0 0 0

 , (38)

where η1 and η2 are two Einstein coefficients which control the population of the excited states. Thus,
we can write the density matrix of an arbitrary three dimensional state at time t evolving under the
spontaneous emission channel as

ρ (t) =

2
j,k=0

Ajk (t) |j⟩ ⟨k| =

2
i=0

Kiρ (0) K
Ď
i . (39)

Using this we can obtain

W (χ,m, t) =
1
3

2
Θ=0

Aχ−Θ,χ+Θ (t) exp

4π i
3

mΘ

. (40)

As mentioned above χ − Θ and χ + Θ are mod d operations. Here, we have considered an initial
density matrix given by Eq. (37) with b01 = b10 =

1
4 and b12 = b21 =

1
5 , while the remaining

coefficients can be obtained from these values. Hence, the obtained tomogram with t = 0 and q = 1
has three components as

ω (0, 0, 1) ≡ ω0 =
1
30


10 + 7


e−

η1t
2 + e−

η2t
2


+ e−

1
2 (η1+η2)t


,

ω (1, 0, 1) ≡ ω1 =
1
60


20 −


e−

η1t
2 + e−

η2t
2


− 13e−

1
2 (η1+η2)t


,

ω (2, 0, 1) ≡ ω2 =
1
60


20 − 13


e−

η1t
2 + e−

η2t
2


+ 11e−

1
2 (η1+η2)t


.

(41)

It can be easily seen here that the tomogram obtained is normalized as
2

m=0 ωm = 1 in Eq. (41).
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Fig. 8. (Color online) The variation of different components of tomogram for a qutrit state with time in the presence of a
spontaneous emission channel with Einstein coefficients η1 = 2 and η2 = 4. The smooth (blue), dashed (red) and dot-dashed
(magenta) lines correspond to ωm withm = 0, 1, and 2, respectively.

For specific values of parameters of the spontaneous emission channel, i.e., Einstein coefficients,
the evolution of tomogram for the qutrit state is shown in Fig. 8. The tomogram shows that the noisy
channel tends to randomize all the components of the tomogram to one-third.We have already noted
that once a tomogram is obtained for a finite dimensional system, it is possible to transform it to obtain
the Wigner function for the system, and vice verse, but in an experiment we obtain tomograms. A lot
of work has been devoted to the study of Wigner functions for finite dimensional systems [7,72–74].
Some efforts have also been made to study tomograms for finite dimensional coherent states
[7,8,74]. However, to the best of our knowledge, no such efforts had yet beenmade to study evolution
of tomograms in noisy environment.

6. Optical tomogram for a dissipative harmonic oscillator

In the end, we come to the tomogram of an infinite dimensional system, the harmonic oscillator.
This is typical of a plethora of oscillatory and optical systems [44,75]. In Ref. [10], the quantum
mechanics of the damped harmonic oscillator was examined, from the perspective of a classical
description of quantum mechanics [76]. Use was made of the generating function method, resulting
in the avoidance of the need to evaluate theWigner function as an intermediary step for obtaining the
tomogram. Further, in [77] the density matrix, state tomogram and Wigner function of a parametric
oscillator were studied.

Here, we construct the tomogram of the dissipative harmonic oscillator evolving under a
Lindbladian evolution, in a phase sensitive reservoir [78]. It would be pertinent to mention that
tomographic reconstruction of Gaussian states evolving under a Markovian evolution has also been
considered in [34]. The dissipative harmonic oscillator can be described by the Hamiltonian

H = HS + HR + HSR, (42)

where the system Hamiltonian Hs of a harmonic oscillator is described as

HS =
p2

2m
+

1
2
mω2x2,

while the reservoir Hamiltonian HR is given by

HR =


j

p2j
2mj

+
1
2
mjω

2
j x

2
j ,

with the system–reservoir interaction Hamiltonian HSR as

HSR =


j

cjxxj.
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Fig. 9. (Color online) The effect of interaction of the optical tomogram with its environment is shown as a function of X and θ
for N = 5, r = 1 for the initial coherent state parameter β = 2 at time t = 0, 1, 10, respectively.

Here, the reservoir is modeled as a bath of harmonic oscillators with cj as the coupling constant.
The dynamics of the system harmonic oscillator is obtained by tracing over the reservoir degrees of
freedom. The optical tomogram from the Wigner function can be obtained using [11]

ω (X, θ) =


W (X cos θ − p sin θ, X sin θ + p cos θ) dp, (43)

where W (x, y, t) is the Wigner function. Similarly, the corresponding Wigner function can also be
reconstructed from the tomogram by inverse Radon transformation. The analytic expression of the
tomogram for the system, initially in the coherent state |β⟩, is

ω(X, θ, t) =


2
π

1
(2NM + 1)−


rMe−2iθ + c.c.


× exp


−

2

Re[βeiθ ]e−kt

− X
2

(2NM + 1)−

rMe−2iθ + c.c.

 . (44)

Here, kB is the Boltzmann constant and N =
1

exp(h̄ωk/kBT )−1 is the average thermal photon number of
the environment at temperature T . Also, r is the bath squeezing parameter, Re[u] denotes the real part
of u and M = 1 − exp (−2kt), where k is the dissipation coefficient, analogous to the spontaneous
emission term.

In the corresponding figures for the tomogramwith specific values of different parameters, we can
observe the decay of the tomogram. Specifically, Fig. 9a shows the tomogram of an initial coherent
state, wherewe can see a beautiful valley like shape surrounded by amountain. Interestingly, a similar
tomogram has been observed for a binomial state of large dimension (cf. Fig. 2 in [79]). However,
in Fig. 9b and c, we can see this sharp structure gradually fade away due to interaction with its
surrounding. Thus, with increase in temperature, the effect of decoherence and dissipation, due to
the ambient environment, deteriorates the obtained tomogram. Further, Fig. 10 illustrates the effect
of change of average thermal photon number and squeezing parameter, where in smooth (blue) and
dot-dashed (cyan) lines we can observe the enhancement of decay. Similarly, dashed (red) and dotted
(magenta) lines also show the effects due to changes in bath parameters for another set of parameters.

7. Conclusion

Tomography is a powerful quantum state reconstruction tool. Its wide applicability in obtain-
ing quasidistribution functions, quantum process tomography and density matrix reconstruction in
quantum computation and communication is already established. However, these properties can get
effected by the influence of the ambient environment. Here, an effort has been made to study the
evolution of tomograms for different quantum systems, both finite and infinite dimensional, under
general system–reservoir interactions, using the formalism of open quantum systems. The effect of
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the environment on the finite dimensional quantum systems, both spin and number-phase states,
is to randomize the tomogram. For spin quantum states, single and two spin- 12 states are considered
with open quantum system effects. For the number-phase states, a general expression is obtained and
is illustrated through the example of a three level quantum (qutrit) system in a spontaneous emission
channel. The increase in temperature tends to decohere the tomograms while squeezing is shown to
be a useful quantum resource. Besides this, a tomogram for a spin-1 pure quantum state is also ob-
tained. Further, the tomogram for an infinite dimensional system, the ubiquitous dissipative harmonic
oscillator, is also studied. The results obtained here are expected to have an impact on issues related to
quantum state reconstruction in quantum computation, communication and information processing.
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Appendix

The elements of the density matrix (24) are

ρee (t) = e−2Γ tρee (0) ,

ρss (t) = e−(Γ+Γ12)tρss (0)+
(Γ + Γ12)

(Γ − Γ12)


1 − e−(Γ−Γ12)t


e−(Γ+Γ12)tρee (0) ,

ρaa (t) = e−(Γ−Γ12)tρaa (0)+
(Γ − Γ12)

(Γ + Γ12)


1 − e−(Γ+Γ12)t


e−(Γ−Γ12)tρee (0) ,

ρgg (t) = ρgg (0)+

1 − e−(Γ+Γ12)t


ρss (0)+


1 − e−(Γ−Γ12)t


ρaa (0)

+


(Γ + Γ12)

2Γ


1 −

2
(Γ − Γ12)

e−(Γ+Γ12)t

×


(Γ + Γ12)

2


1 − e−(Γ−Γ12)t


+
(Γ − Γ12)

2


+
(Γ − Γ12)

(Γ + Γ12)


1 − e−(Γ−Γ12)t


−
(Γ − Γ12)

2Γ


1 − e−2Γ t ρee (0) ,

ρes (t) = e−i(ω0−Ω12)te−
1
2 (3Γ+Γ12)tρes (0) ,

ρea (t) = e−i(ω0+Ω12)te−
1
2 (3Γ−Γ12)tρea (0) ,

ρeg (t) = e−2iω0te−Γ tρeg (0) ,

ρsa (t) = e−2iΩ12te−Γ tρsa (0) ,

ρsg (t) = e−i(ω0+Ω12)te−
1
2 (Γ+Γ12)t


ρsg (0)+

(Γ + Γ12)
Γ 2 + 4Ω2

12

 2Ω12e−Γ t sin (2Ω12t)

+Γ

1 − e−Γ t cos (2Ω12t)


+ i


2Ω12


1 − e−Γ t cos (2Ω12t)


− Γ e−Γ t sin (2Ω12t)


ρes (0)


,

ρag (t) = e−i(ω0−Ω12)te−
1
2 (Γ−Γ12)t


ρag (0)−

(Γ − Γ12)
Γ 2 + 4Ω2

12

 2Ω12e−Γ t sin (2Ω12t)

+ Γ

1 − e−Γ t cos (2Ω12t)


− i


2Ω12


1 − e−Γ t cos (2Ω12t)


− Γ e−Γ t sin (2Ω12t)

 
ρea (0)


.

(45)
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Fig. 10. (Color online) The tomogram of a dissipative harmonic oscillator varying with time is shown for the initial coherent
state parameter β = 2 and θ =

π
3 . The smooth (blue) and dashed (red) lines correspond to the tomogram for N = 5, r = 1

for X = 1 and 2, respectively. Similarly, the dot-dashed (cyan) and dotted (magenta) lines correspond to the tomogram for
N = 10, r = 4 for X = 1 and 2, respectively.

Here, all the matrix elements are written in the dressed state basis, which is connected with the bare
state basis by

|g⟩ = |g1⟩ |g2⟩ ,

|s⟩ =
1

√
2
(|e1⟩ |g2⟩ + |g1⟩ |e2⟩) ,

|a⟩ =
1

√
2
(|e1⟩ |g2⟩ − |g1⟩ |e2⟩) ,

|e⟩ = |e1⟩ |e2⟩ .

Further,

Ωij =
3
4


ΓiΓj


−


1 −


µ̂ · r̂ij

2 cos

k0rij


k0rij

+


1 − 3


µ̂ · r̂ij

2 sin

k0rij


k0rij

2 +
cos


k0rij


k0rij

3


,

where µ̂ = µ̂1 = µ̂2 are the unit vectors along the atomic transition dipole moments, r̂ij = r̂i − r̂j,
and k0 =

ω0
c with ω0 =

ω1+ω2
2 ; the spontaneous emission rate is

Γi =
ω3

i µ
2
i

3πϵh̄c3
,

and the collective incoherent effect due to the dissipative multi-qubit interaction with the bath is

Γij = Γji =

ΓiΓjF


k0rij


,

for i ≠ jwith

F

k0rij


=

3
2


1 −


µ̂ · r̂ij

2 sin

k0rij


k0rij

+


1 − 3


µ̂ · r̂ij

2 cos

k0rij


k0rij

2 −
sin

k0rij


k0rij

3


.

Further, for the case of identical qubits, as considered here,Ω12 = Ω21, Γ12 = Γ21, and Γ1 = Γ2 = Γ .
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